NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ASN1C ASN.1 Compiler Training

NL Telecom Co., Ltd.
Version 1.4c

2011-5-12

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 1 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ASN1C/ASN1CPP Training

N
LASNLL ZHR T R s 4
L1 ASNLL ZHR oo e 4
1-2. ASNLL TRM e 5
1-2-1. SYSTEM ZEE] REO| ...t 5
1-2-2. CONVERSIONo.ooooioreieseeeceeeeeeeeee e ssses s s s s s ssesseens e sesssanas 5
1-2-3. ASNLL TEZ oot 6
1-2-4. ASN.1 1988 VS ASN.L 1977 w.oorveorveeeeeeseeeseeeeseeeseeeneeesseeessees s s ses s ess s s s 10
1-3. ASNLLSYNTAX &) Z1E BA] e 15
1-3-1. ABSTRACT SYNTAX & TRANSFER SYNTAXcooiriecreeeiseieessseeseesssessssssissssssssssesssessssens 15
1-3-2. SEQUENCE €} SET &) FFOIT ..o 30
1-3-3. SEQUENCE ¢} SEQUENCE OF & XFOITiivieeieceeceeceesveeseesseesse s 30
1-3-4. SEQUENCE OF &} SET OF &) FFOIR . ..ot 30
1-3-5. CHOICE TR oottt 32
1-3-6. TLV ENCODINGoooooveereeeeeieseeee e seessee e s s sss s aessesssnsssssssns s sssansees 32
1-B-7. TAG Y THW oot 34
1-3-8. IMPLICIT TAG, EXPLICIT TAG, AUTOMATIC TAG ..o.oorvoeeveeeveeneeeeeeeseesseneesnesessssesasnne 35
1-3-9. TAFE ASN.L TFAY] AFR oo 35
1-3-10. ASN.1 TFZ L] COMPATIBILTY w.oooovierviceeeceeoeeseee e ssessss s asssesssssssseessss s neses 36

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 2 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

1-4. BER T} DER ...ttt 40
1-5. ASNLC & ASNCPRP ...ttt r et et 40
1-5-1. OBJECTIVE SYSTEM ASN.1C COMPILER Q&A ..o e 44
2-1 ASN.1C COMPILER SOFTWARW A X]cooiiiiiiiiiieiciecesese s 46
2-1-1 MICROSOFT WINDOWS DISTRIBUTIONcoiiiiiiieieiieeee s 46
2-1-2. UNIX DISTRIBUTION ..ottt et 49
2-2. COMMAND-LINE ASNLIC AL BY ..ottt 51
2-2-1. NMAKE CLEAN ..ottt ettt et r ettt e ren e 54
2-2-2. NIMAKE ...t et et e e r et et e 55
2-3 GUI WIZARD ASNLC A Bttt 58
2-4 SAMPLE BER BUILD ™ TIB]Z] ..ottt 71
2-4-1 SAMPLE PER BUILD T T .ot 71
2-4-2 T2 PLATFORMS ol RUN-TIME CODE B ...t 71
2-5. REFERENCE ...t ettt 74
THE END OF DOCUMENT ..ottt et nn 75

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 3 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

1. ASN.1 2 Jie & ER4
1-1. ASN.1 HR

ASN.1 2 Abstract Syntax Notation one & Zoll, =2XH&EIISA HAE(ITU)MAM A&t
HEKAQS HOIE WEsS Host TIZ2EZZ X.208, X.209 & X.690 0l HZ | USLILCH

OSI & ZE0A ASN.1 2 UERZ 2l AL As 2= WAt 201 G0l

ASN.1 2 Oidl SgH0l1] 22 UERD S2EHAENAM AFZELIC HE =% OSI UIER/RA
el Ty At eIHY TCP/IP ZE2EZ2 230 A & SNMP 2Z 2F0AM2 20l
HEcIAOIEE2 HAS Jl=dt=0l ArEELICH

ASN.1 2 28 ZEHUM OE HX AAES AT = A= ES(End System) A0Sl BEE

HERAZD&0 EMols Gee S7F2 AIABEEE2 22 HO0IHE HEote SSet daS L
USLICH [etd UIESRIR H0lAd HAIXE weotd] s 2 AAEHAM 2otEsY =
Ae SIS s8d A= UoIE HeigdaAs Fo/g 2RIt USLICH Olfst M 2B 0 2o A
ASN.1 2 EoE =ACH ASN.1 OlA= INTEGER Lt 21E STRING SEH2 OIOIEHE HIEoH
_Jei8t ASN.1 content 221 2821 SEQUENCE ULt SET S92 HIOIE ZEEAS H2AS2ZM
HE=22 UERD &0lMd w0 X= HAIXISS ASN.T ol Metd 28e = UAES
otRASLICH

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 4 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

1-2. ASN.1 224

1-2-1. System 22| Xi0|

Sun 1t Windows 2t2] Data € =1 2= Application 2 M4l AMEHE2

Data E =1 Z2™ Computer System 0l [tet 24&ct= 201 Gh2D] 20 Y Sst
8 &Lt 6IE &0, 100 0let= 22 Sun OlA Windows AIAEICZ ZSSH 32 bit

integer & AME5I0 EWUH Windows HlAl= OISR 2 =2 ClAlGHAH &EC (1,677,721,600)
0Ol2 & E0UZ Endian 0l2t at=0l, Sun M= Motorola HZ 2| Big Endian 2 AFE35HH
100 2 [00 00 00 6412+ 20| QIAISICE, 0|2%t= BHHZ Intel Q! Little Endian 2

Windows 0lAM= 100 £ [64 00 00 00] 2t &0l QIAISHCH et - SHZE UM Byte &HeIZ

Swapping 2 HF=0{0F &tC}.

Ol= 2& Integer JI 32 bit 2l BR0U HY = A 0I12 64-bit machine OIL} 8-bit, 16—bit

HAR0l= &£ 0|0FIIDF Let&ICE Byte Alignment 0l 2ol Al Structure & XS =1 &t

= JeS 220 Compiler Ol MHetAl 2F2+2 XHOIE S8t AD10 &0 Ol S8t

Language € AIEdte 3RO, 2 C++2t Ada Application 0] S&lI8tCt] JtESHH O &
=4 Xl

He O s =&l &C

e

nio
rr

1 i

o AT, T

S
P

",

1-2-2. Conversion

System 2 +=Jt sHZ0l et 22 &2 1 U 12 Conversion =82 #H0l 2LXAH AT
fIo OZ0AM E= 20 W 201 AIAEZY HIERIIL LM AS0| 2RE =25
e & QUCH 642 HBIJF A= Z<0 15 ItXI2l Conversion 0l JHE ZI0{0F GHH 2t
ANAEZ 5002 Conversion 0l et =S JIS0O0F &L N AIAEO0l U= B

Vendor = N—-1 2| Conversion O] 2RatHl ECH 0lad StAHE 2 =061D] {8t 2101 ASN.1 9

SHOICH 28 AIAEHIA= ASN.1 0l2t= atuel E=0 U8t Conversion 2t JHE6HH
2E HUIQ Data E F1 &2 5= UA ECEH OIEH M ZSHXIAH & 2401 1988 & [TU
ASN.1 72 0IC.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 5 of 100

NL Telecom co., Ltd

1-2-3. ASN.1 7+

1=
H&

ZlZ=2 ASN.1
X.208 1 1990 & ISO 8824 Jt

=13
=

H&E X.409 JF 1984 W 2 o
T ASLICH E£8F ISO 8824 PDAM2(Prefixes and wild cards

Obijective System ASN1C ASN.1 Compiler Training

AL, OI0A M=Z= H&E0l 1998 & CCITT 2

extensions) 2| HEAHl Part 1: Basic ASN.1 1t MIIHXl =IF 22: Information Object Specification,

Constraint Specification, Parameterization 2/ ASN.1 0| JH& & ASLILCH

1994 H 0l OfcHel H2F 20| ISO 2 CCITT & ASN.1 & 2 At

2002 Holl HE = ASLICH

gt
=

FHl
FH
A4
uin
ro

TR, 0

ITU-T X.680 ISO/IEC 8824-1
ITU-T X.681 ISO/IEC 8824-2
ITU-T X.682 ISO/IEC 8824-3
ITU-T X.683 ISO/IEC 8824-4
ITU-T X.690 ISO/IEC 8825-1
ITU-T X.691 ISO/IEC 8825-2

U222l abstract syntax 2 28X 0l

e Modules and Assignments

o Modules

0 Type Assignment

o Value Assignment

Built-in Types
o Simple Types

o0 Structured Types

Tagged

Useful Types
0 GeneralizedTime

o UTCTime

EXTERNAL

Character String Types

Embedded PDV

OF
S

At Otei 2t st

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 6 of 100

http://www.obj-sys.com/asn1tutorial/node5.html�
http://www.obj-sys.com/asn1tutorial/node6.html�
http://www.obj-sys.com/asn1tutorial/node7.html�
http://www.obj-sys.com/asn1tutorial/node8.html�
http://www.obj-sys.com/asn1tutorial/node9.html�
http://www.obj-sys.com/asn1tutorial/node10.html�
http://www.obj-sys.com/asn1tutorial/node11.html�
http://www.obj-sys.com/asn1tutorial/node12.html�
http://www.obj-sys.com/asn1tutorial/node13.html�
http://www.obj-sys.com/asn1tutorial/node14.html�
http://www.obj-sys.com/asn1tutorial/node15.html�
http://www.obj-sys.com/asn1tutorial/node16.html�
http://www.obj-sys.com/asn1tutorial/node128.html�
http://www.obj-sys.com/asn1tutorial/node125.html�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

e Additional Features

0 Subtype Notation and Value Sets

O Recursion
o Macros
o0 Information Objects and Classes - Coming Soon!

o0 Parameterized Types - Coming Soon!

(3% Computer Networks and Open Systems An Application Development Perspective by Lillian N. Cassel

Richard H. Austing Jones & Bartlett Publisher)

¥ [TU B10AHE (20094 1 &) :

ITU-T ASN.1 Standards Projects

Abstract Syntax Notation One

X.680 — Basic Notation

X.681 — Information Objects

X.682 — General Constraint Notation

X.683 — Parameterization

X.690 — Basic (BER), Cannoical(CER), and Distinguished (DER) Encoding Rules
X.691 — Packed Encoding Rules (PER)

Latest
X.692 — Encoding Control Notation (ECN)
X.693 — XML Encoding Rules (XER)

For more information on ASN.1:

ITU-T ASN.1 Project (http://www.itu.int/itu-t/asnl)
Module Database (http://www.itu.int/itu-t/asnl/database/)
OID (Object Identifiers) (http://asnl.elibel.tm.fr/oid/)
ASN.1 Consortium (http://www.asnl.org)

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 7 of 100

http://www.obj-sys.com/asn1tutorial/node17.html�
http://www.obj-sys.com/asn1tutorial/node18.html�
http://www.obj-sys.com/asn1tutorial/node19.html�
http://www.obj-sys.com/asn1tutorial/node20.html�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ITU-T X.680-X.693 & 11¢t

In force components

Number Title Status

X.680 (07/02) Information technology - Abstract Syntax Notation One (ASN.1): In force
Specification of basic notation

X.680-X.693 Information Technology - Abstract Syntax Notation One (ASN.1) & ASN.1 |(In force

(07/02) encoding rules

This word collective file contains automatic cross-linkings, and is
available in English only. Please read carefully the readme.rtf file
before opening it.

X.681 (07/02) Information technology - Abstract Syntax Notation One (ASN.1): In force
Information object specification

X.682 (07/02) Information technology - Abstract Syntax Notation One (ASN.1): In force
Constraint specification

X.683 (07/02) Information technology - Abstract Syntax Notation One (ASN.1): In force

Parameterization of ASN.1 specifications

X.690 (07/02) Information technology - ASN.1 encoding rules: Specification of Basic In force
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)

X.691 (07/02) Information technology - ASN.1 encoding rules: Specification of Packed |In force
Encoding Rules (PER)

X.692 (03/02) Information technology - ASN.1 encoding rules: Specification of In force
Encoding Control Notation (ECN)

An electronic version of Annex E of this Recommendation with an
associated ECN Huffman encoding macro is also published
independently and freely available from ITU website

X.693 (12/01) Information technology - ASN.1 encoding rules: XML encoding rules In force

OID (Objective Identifiers) & 1ot

X.660 Information technology - Open systems interconnection - Procedures for the PDF
operation of OSI registration authorities: General procedures and top arcs of the
ASN.1 object identifier tree

X.662 Information technology - Open Systems Interconnection - Procedures for the PDF
operation of OS| Registration Authorities: Registration of values of RH-name-
tree components for joint

X.667 Information technology - Open Systems Interconnection - Procedures for the PDF

operation of OS| Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier

components

Changing from ASN.1:1988 to ASN.1:2002(http://www.itu.int/ITU-

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 8 of 100

http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.680-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.680-X.693-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.680-X.693-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.681-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.682-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.683-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.690-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.691-200207-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.692-200203-I�
http://www.itu.int/rec/T-REC-X.680-X.693/recommendation.asp?lang=en&parent=T-REC-X.693-200112-I�
http://www.itu.int/ITU-T/studygroups/com17/oid/X.660-E.pdf�
http://www.itu.int/ITU-T/studygroups/com17/oid/X.662-E.pdf�
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf�
http://www.itu.int/ITU-T/studygroups/com17/changing-ASN/�

NL Telecom co., Ltd

Obijective System ASN1C ASN.1 Compiler Training

T/studygroups/com17/changing-ASN/)

72
X.208 (11/88)

X.209 (11/88)

X.660 (08/04)

X.667 (09/04)

X.680 (07/94)

X.680 (12/97)

X.680 (1997) Amendment 2

(06/99)

X.680 (07/02)

X.680-X.693 (07/02)

X.681 (07/94)

X.681 (12/97)

X.681 (1997) Amendment 1

(06/99)

X.681 (07/02)

X.682 (07/94)

X.682 (12/97)

=
Specification of Abstract Syntax Notation One (ASN.1)

Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1)

Information technology - Open systems interconnection - Procedures for the
operation of OSI registration authorities: General procedures and top arcs of the
ASN.1 object identifier tree

Information technology - Open Systems Interconnection - Procedures for the
operation of OSI Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier

components

Information technology - Abstract Syntax Notation One (ASN.1):

Specification of basic notation

Information technology - Abstract Syntax Notation One (ASN.1): Specification

of basic notation

ASN.1 Semantic model

Information technology - Abstract Syntax Notation One (ASN.1): Specification

of basic notation

Information Technology - Abstract Syntax Notation One (ASN.1) & ASN.1

encoding rules

Information technology - Abstract Syntax Notation One (ASN.1):

Information object specification

Information technology - Abstract Syntax Notation One (ASN.1): Information

object specification

ASN.1 semantic model

Information technology - Abstract Syntax Notation One (ASN.1): Information

object specification

Information technology - Abstract Syntax Notation One (ASN.1):

Constraint specification

Information technology - Abstract Syntax Notation One (ASN.1): Constraint

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 9 of 100

http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.208-198811-W�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.209-198811-W�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.660-200408-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.667-200409-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.680-199407-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.680-199712-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.680-199906-S!Amd2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.680-199906-S!Amd2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.680-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.680-X.693-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.681-199407-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.681-199712-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.681-199906-S!Amd1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.681-199906-S!Amd1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.681-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.682-199407-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.682-199712-S�

NL Telecom co., Ltd

X.682 (07/02)

X.683 (07/94)

X.683 (12/97)

X.683 (1997) Amendment 1

(06/99)

X.683 (07/02)

X.690 (07/94)

X.690 (12/97)

X.690 (07/02)

X.691 (04/95)

X.691 (12/97)

X.691 (07/02)

X.692 (03/02)

X.693 (12/01)

X.694 (01/04)

X.711 (1997) Technical Cor.2

(02/00)

Obijective System ASN1C ASN.1 Compiler Training

specification

Information technology - Abstract Syntax Notation One (ASN.1): Constraint
specification

Information technology - Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications

Information technology - Abstract Syntax Notation One (ASN.1):

Parameterization of ASN.1 specifications

ASN.1 semantic model

Information technology - Abstract Syntax Notation One (ASN.1):

Parameterization of ASN.1 specifications

Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)

Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)
Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)
Information technology - ASN.1 encoding rules - Specification of Packed
Encoding Rules (PER)
Information technology - ASN.1 encoding rules: Specification of Packed

Encoding Rules (PER)

Information technology - ASN.1 encoding rules: Specification of Packed
Encoding Rules (PER)

Information technology - ASN.1 encoding rules: Specification of Encoding
Control Notation (ECN)

Information technology - ASN.1 encoding rules: XML encoding rules

Information technology - ASN.1 encoding rules: Mapping W3C XML schema
definitions into ASN.1

Revision to include ASN.1:1997

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 10 of 100

http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.682-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.683-199407-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.683-199712-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.683-199906-S!Amd1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.683-199906-S!Amd1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.683-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.690-199407-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.690-199712-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.690-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.691-199504-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.691-199712-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.691-200207-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.692-200203-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.693-200112-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.694-200401-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.711-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.711-200002-I!Cor2�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

X.722 (1992) Technical Cor.2
02/00

Revision of GDMO to include ASN.1:1997

:

X.723 (1993) Technical Cor.2
02/00

Revision of GMI to include ASN.1:1997

:

.742 (1995) Technical Cor.2
02/00

Revision to include ASN.1:1997

: |

.744 (1996) Technical Cor.2
02/00

Revision to include ASN.1:1997

1

.750 (1996) Technical Cor.1
02/00

Revision to include ASN.1:1997

:

X.751 (1995) Technical Cor.2
02/00

Revision to include ASN.1:1997

E[

.891 (05/05 Information technology - Generic applications of ASN.1 - Fast INFOSET
X.892 (05/05) Information technology - Generic applications of ASN.1 - Fast web services
Z.100 Supplement 1 (05/97) SDL+ methodology: Use of MSC and SDL (with ASN.1)

Z.105 (03/95) SDL combined with ASN.1 (SDL/ASN.1)

Z.105 (11/99) SDL combined with ASN.1 modules (SDL/ASN.1)
Z.105 (10/01) SDL combined with ASN.1 modules (SDL/ASN.1)
Z.105 (07/03) SDL combined with ASN.1 modules (SDL/ASN.1)
Z.107 (11/99) SDL with embedded ASN.1

Testing and Test Control Notation version 3 (TTCN-3): Using ASN.1 with

Z.146 (03/06)
TTCN-3

% ASN.1 & OID Project 2&d LHE

The ASN.1 Project was established in February 2001 by ITU-T Study Group 7 to assist
existing users of ASN.1 (ITU-T Rec. X.680, X.690 and X.890 series) within and outside of ITU-T,
and to promote the use of ASN.1 across a wide range of industries and standards bodies.
Since September 17, 2001, the responsibility for the ASN.1 Project resides with Study
Group 17 and the Project now encompasses Object Identifiers (OIDs) and Registration
Authorities (as defined in the ITU-T Rec. X.660 series).

(ITU-T Rec. X.680, X.690 and X.890 series)

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 11 of 100

http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.722-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.722-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.723-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.723-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.742-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.742-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.744-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.744-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.750-200002-I!Cor1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.750-200002-I!Cor1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.751-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.751-200002-I!Cor2�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.891-200505-P�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-X.892-200505-P�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.100-199705-I!Sup1�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.105-199503-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.105-199911-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.105-200110-S�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.105-200307-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.107-199911-I�
http://www.itu.int/search/searchredirect.asp?recommendation.asp?type=items&lang=E&parent=T-REC-Z.146-200603-P�
http://www.itu.int/ITU-T/studygroups/com17/languages/index.html�
http://www.itu.int/ITU-T/studygroups/com17/oid.html�
http://www.itu.int/ITU-T/studygroups/com17/languages/index.html�

NL Telecom co., Ltd

Recommendation

X.680 (07/02)

in force

X.680 Amendment 1 (10/03)

in force

X.680 Amendment 2 (08/04)

in force

X.680 Corrigendum 1

in force

X.681 (07/02)

in force

X.681 Amendment 1 (10/03)

in force

X.682 (07/02)

in force

X.683 (07/02)

in force

X.690 (07/02)

in force

X.690 Amendment 1 (10/03)

in force

X.691 (07/02)

in force

X.691 Erratum 1 (06/03)

in force

X.691 Amendment 1 (10/03)

Obijective System ASN1C ASN.1 Compiler Training

Title

Information technology - Abstract Syntax Notation One

(ASN.1): Specification of basic notation

Support for EXTENDED-XER

Alignment with changes made to ITU-T Rec. X.660 |
ISO/IEC 9834-1 for identifiers in object identifier value

notation

Information technology - Abstract Syntax Notation One

(ASN.1): Information object specification

Support for EXTENDED-XER

Information technology - Abstract Syntax Notation One

(ASN.1): Constraint specification

Information technology - Abstract Syntax Notation One

(ASN.1): Parameterization of ASN.1 specifications

Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules

(DER)

Support for EXTENDED-XER

Information technology - ASN.1 encoding rules:

Specification of Packed Encoding Rules (PER)

Erratum 1

Support for EXTENDED-XER

Format
|

o
b

o
T

o
)
A

o
T

o
b

o
T

o
b

o
T

o
b

o
T

o
b

o
T

o
b

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 12 of 100

http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680amd1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X680amd2.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X680cor1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.681-0207.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X681amd1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.682-0207.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.683-0207.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X690amd1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X691err1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X691amd1.pdf�

NL Telecom co., Ltd

in force

X.691 Corrigendum 1
pre-published

X.692 (03/02)

in force

X.692 Amendment 1 (08/04)

in force

X.692 Annex E (03/02)

in force

X.692 Corrigendum 1

in force

X.693 (12/01)

in force

X.693 Amendment 1 (10/03)

in force

X.694 (01/04)

in force

Z.100 (08/02)

in force

Z.100 Supplement 1 (05/97)

in force

Z.100 Corrigendum 1 (08/04)

in force

Z.100 Amendment 1 (10/03)

in force

Z.100 Annex F1 (11/00)

in force

Z.100 Annex F2 (11/00)

Obijective System ASN1C ASN.1 Compiler Training

Information technology - ASN.1 encoding rules -
Specification of encoding control notation (ECN)

Extensibility support

Support for Huffman encodings

Information technology - ASN.1 encoding rules: XML
encoding rules (XER)

XER encoding instructions and EXTENDED-XER

Information technology - ASN.1 encoding rules: Mapping
W3C XML schema definitions into ASN.1

Specification and description language (SDL)

SDL+ methodology: Use of MSC and SDL (with ASN.1)

Backwards compatibility and compliance

SDL formal definition: General

Well-formedness and Transformation rules

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

o
T

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 13 of 100

http://www.itu.int/ITU-T/studygroups/com17/languages/X.691cor1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-0203.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X692amd1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X692annE.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X692cor1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X693amd1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/X694.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100sup1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100cor1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100amd1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100AnnF1.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100AnnF2.pdf�

NL Telecom co., Ltd

Obijective System ASN1C ASN.1 Compiler Training

in force
Z.100 Annex F3 (11/00) SDL formal definition: Dynamic Semantics PDF
in force
Z.110 (11/00) Criteria for use of formal description techniques by ITU-T PDF
in force
Z.120 (04/04) Message Sequence Charts (MSC) PDF
pre-published
Z.120 Annex B (04/98) Annex B: Formal semantics of Message Sequence Charts PDF
in force
Z.140 (04/03) Testing and test control notation version 3 (TTCN-3): Core PDF
in force language
Z.141 (02/03) Testing and test control notation version 3 (TTCN-3): PDF
in force Tabular presentation format
Z.142 (02/03) Testing and test control notation version 3 (TTCN-3): PDF
in force Graphical format
(ITU-T Rec. X.660 series)
X.660 | Information technology - Open systems interconnection - Procedures for the PDF
operation of OSI| registration authorities: General procedures and top arcs of the
ASN.1 object identifier tree
X.662 | Information technology - Open Systems Interconnection - Procedures for the PDF
operation of OSI Registration Authorities: Registration of values of RH-name-tree
components for joint
X.667 | Information technology - Open Systems Interconnection - Procedures for the PDF

operation of OS| Registration Authorities: Generation and registration of
Universally Unique ldentifiers (UUIDs) and their use as ASN.1 Object ldentifier

components

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 14 of 100

http://www.itu.int/ITU-T/studygroups/com17/languages/Z100AnnF3.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z.110_0011.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z120.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z.120AnnB-0498.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z.140-0304.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z.141-0302.pdf�
http://www.itu.int/ITU-T/studygroups/com17/languages/Z.142-0302.pdf�
http://www.itu.int/ITU-T/studygroups/com17/oid.html�
http://www.itu.int/ITU-T/studygroups/com17/oid/X.660-E.pdf�
http://www.itu.int/ITU-T/studygroups/com17/oid/X.662-E.pdf�
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

1-2-4. ASN.1 1988 vs ASN.1 1997

TMN(Telecommunication Management Network) ol A At &l = CMIP(Common Management
Information Protocol)2| CHE =2 #Z 2 ASN.1 1988 A= AtEot) ULCH 1988 & HAEZ2 =D
M E0leh Value 220 Uist 222 parser & HeolI| Hel 2Is6IEE T U= S €2
FHES ot QUCH ASN.1 1997 Ol = value Assignment 0l CHEH 2HIES L&t E2
ZHMSO0| oHZ T 0 1988 H0ll HIGH X0l AF® Jts8 B2z M2AECH 1997

Open Type 21 JHEO0l 200 &= &l ANY type & ATHIGHALH GHAIBH OISl #2301 ANY
type S 20| ALESII] 20 1997 & BHEO ANY £ FII5t0 AtE6ts 282 (HIE #A0=
LIBHEI X1 Tool JHYE LXOUHA NSt HS = &= ULL

1-3. ASN.1 syntax 2| J|& A
1-3-1 Abstract Syntax 2 Transfer Syntax

Abstract Syntax @ Transfer Syntax 2| JHEZ C 2 H|luWdtH 0loidto| S & Ct. Abstract

Syntax = C Ol Type Ol sHE &= 2d0ICt Transfer Syntax = C 0= JHEO0l 2B 1
OlsE 2HHOICH OE S0 inti 2t dAHE B9 s MES= 22 C Compiler £
BtE= N X0 Kb H Z2ICH SHXI i 0l CHst Aats
SHIEH 0% == 240ICt. StAI2H ASN.1 2 &=
ot W20l inti & 8t0] H® Al2=2 encoding 0| &l
transfer syntax ¢t1l St integer & &2 HEHN =1 &1, real 82
20l olld UL MS22Z SO0JkA COlA 201 Transfer Syntax 2 JHE 1t
RS =0 inti2 20l MEEZN U= SEicty 2 = AL

Abstract Syntax = AIEXE I8t #H32=2A ITU M0 Hdese S 25 Abstract
Syntax & AFES8tCE. (X.208, X.209, X.680~X.683). 0l ASN.1 #3S AME6IH &M 2%S =1
2= [Transfer Syntax & AFESHA &0 010l= BER, PER, LWER(Light-Weight Encoding
Rules) S0I RUCH.

0
o M
08

JI2X0l ASN.1 9 J|2 EIYEE tag number @ 22l A °l(class) £&, X&&(constructed)
1L Sh=&(primitive) C1JIE LIEIUWE E2i0 S22 A& 6lE 2 base contents & 20|
J2l1 base contents S A ELICH

£ ASN.1 2 Et22 class & 80I0tY tag number& & E

A 2
tag 2 JIX D USLICH tag 2 e A 0l= Universal, Application, Private, Context—specific S2l

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 15 of 100

NL Telecom co., Ltd

= XX
— My

Base content 2 20|

1) OtXI20l eoc(End of octet)E LIEFHH= 0000 22

indefinite 410 UASLILCH

® Modules 1} Assignments

A. module : ASN.1 2 J|&

B. Type Assignment : E+2!

o)

Obijective System ASN1C ASN.1 Compiler Training

K E6t= definite @Al 2012 022 #&F0ot1

n=
==

=
base contents 2

InventoryList {1200 6 1} DEFINITIONS ::=

BEGIN
{

[temld ::= SEQUENCE

{

par tnumber

[ASString,

quantity INTEGER,
wholesaleprice REAL,
saleprice REAL

}
StorelLocation

{

- := ENUMERATED

Baltimore (0),
Philadelphia (1),

Washington
}

END

(2)

C. Value Assignment : gt &Y
oll)
gadget Itemld ::=
{
par tnumber "7685B82",
quantity 73,
wholesaleprice 13.50,
saleprice 24.95
}
® Built=in Type

A. Simple Types

base contents J}
LIEIW =

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 16 of 100

NL Telecom co., Ltd

Simple Types
BOOLEAN

INTEGER

BIT STRING

OCTET STRING
NULL

OBJECT IDENTIFIER
REAL

ENUMERATED

CHARACTER STRING

Character String
Type

Numer icString

PrintableString

TeletexString
(T61String)

VideotexString

VisibleString
(150646String)

[ASString
GraphicString
GraphicString

Tag

O oo o M W N

(@}

Tag

18

19

20

21

26

22
25
27

Obijective System ASN1C ASN.1 Compiler Training

Typical Use

Model logical, two-state variable values

Model integer variable values

Model binary data of arbitrary length

Model binary data whose length is a multiple of eight
Indicate effective absence of a sequence element
Name information objects

Model real variable values

Model values of variables with at least three states

Models values that are strings of characters from a specified
characterset

Character Set

0,1,2,3,4,5,6,7,8,9, and space

Upper and lower case letters, digits, space, apostrophe, left/right
parenthesis, plus sign, comma, hyphen, full stop, solidus, colon,
equal sign, question mark

The Teletex character set in CCITT's T61, space, and delete

The Videotex character set in CCITT's T.100 and T.101, space,
and delete

Printing character sets of international ASCII, and space

International Alphabet 5 (International ASCII)
All registered G sets, and space

All registered C and G sets, space and delete

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 17 of 100

NL Telecom co., Ltd

B. Structured Types

Structured Types
SEQUENCE
SEQUENCE OF

SET

SET OF

CHOICE

SELECTION

ANY

® Tagged

o) Otehel a), b), c), d) Ol tagging 0l 8l a) = & RE YAl9

a) seats SET
{
max i mum
occupied
vacant

h

b) seats SET
{
max i mum
occupied
vacant

}

c) seats SET
{
max i mum
occupied
vacant

}

d) seats SET
{

Tag
16
16

17

17

INTEGER,
INTEGER,

INTEGER

Obijective System ASN1C ASN.1 Compiler Training

Typical Use
Models an ordered collection of variables of different type
Models an ordered collection of variables of the same type

Model an unordered collection of variables of different
types

Model an unordered collection of variables of the same
type

Specify a collection of distinct types from which to choose
one type
Select a component type from a specified CHOICE type

Enable an application to specify the type
Note: ANY is a deprecated ASN.1 Structured Type. It has
been replaced with X.680 Open Type.

Ho
04
©
-
o

[APPLICATION 0]
[APPLICATION 1]
[APPLICATION 2]

[APPLICATION 0]
[APPLICATION 1]
[APPLICATION 2]

INTEGER,
INTEGER,
INTEGER

IMPLICIT INTEGER,
IMPLICIT INTEGER,
IMPLICIT INTEGER

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 18 of 100

NL Telecom co., Ltd

max imum

Obijective System ASN1C ASN.1 Compiler Training

[0] INTEGER,

occupied [1] INTEGER,

vacant

}

® Useful Types

[2] INTEGER

A. GeneralizedTime

B. UTCTime
C. EXTERNAL

o)

ISO 8824 =

EXTERNAL
{

OFeH el EXTERNAL type 2 &2

ot UCH.:

::= [UNIVERSAL 8] IMPLICIT SEQUENCE

direct-reference OBJECT IDENTIFIER OPTIONAL,
indirect-reference [INTEGER OPTIONAL,
data-value—descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE

}

{single-ASN1-type [0O] ANY,
octet-al igned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING}

D. Character String Types

Character Type
BMPString
|A5String
GeneralString
GraphicString
Numer icString
PrintableString
TeletexString

UniversalString

UTF8String

VideotexString

VisibleString

Tag | Description

30 Basic Multilingual Plane of ISO/IEC/ITU 106461

22 | International ASCII characters (International Alphabet 5)

27 |all registered graphic and character sets plus SPACE and DELETE
25 |all registered G sets and SPACE

18 11,2,3,4,5,6,7,8,9, 0, and SPACE

19 la-z, A-Z, ' () +,-.7:/= and SPACE

20 |CCITT and T.101 character sets

28 |1SO10646 character set

any character from a recognized alphabet (including ASCII control
characters)

21 |CCITT's T.100 and T.101 character sets

26 |International ASCII printing character sets

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 19 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

E. Embedded PDV

o)

EmbeddedPDV ::= [UNIVERSAL 11] IMPLICIT SEQUENCE {
identification CHOICE {
syntaxes SEQUENCE {
abstract OBJECT IDENTIFIER,
transfer OBJECT IDENTIFIER }
— Abstract and transfer syntax object identifiers ——,
syntax OBJECT IDENTIFIER
—— A single object identifier for identification of the abstract
—— and transfer syntaxes ——,
presentation—-context—id INTEGER
— (Applicable only to 0S| environments)
-— The negotiated 0S| presentation context identifies the
—— abstract and transfer syntaxes ——,
context-negotiation SEQUENCE {
presentation—context—id INTEGER,
transfer-syntax OBJECT IDENTIFIER }
—(Applicable only to 0S| environments)
—— Context—negotiation in progress, presentation—-context—id
—— identifies only the abstract syntax
— so the transfer syntax shall be specified —,
transfer—syntax OBJECT IDENTIFIER
—— The type of the value (for example, specification that it is
— the value of an ASN.1 type)
— is fixed by the application designer (and hence known to both
— sender and receiver). This
— case is provided primarily to support
— selective-field-encryption (or other encoding
— transformations) of an ASN.1 type —,
fixed NULL
— The data value is the value of a fixed ASN.1 type (and hence
—— known to both sender
— and receiver) —
I3
data-value—descriptor ObjectDescriptor OPTIONAL
—— This provides human-readable identification of the class of the
-— value —,
data-value OCTET STRING }
(WITH COMPONENTS {

data-value—descriptor ABSENT })

® Additional Features

A. Subtype Notation and Value Sets

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 20 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

B. Recursion

C. Macros

D. Information Objects and Classes
E. Parameterized Types

® Listing of Universal Tags

Universal Tag Number Description
0 reserved for BER
1 BOOLEAN
2 INTEGER
3 BIT STRING
4 OCTET STRING
5 NULL
6 OBJECT IDENTIFIER
7 ObjectDescriptor
8 INSTANCE OF, EXTERNAL
9 REAL
10 ENUMERATED
11 EMBEDDED PDV
12 UTF8String
13 RELATIVE-OID
16 SEQUENCE, SEQUENCE OF
17 SET, SET OF
18 NumericString
19 PrintableString
20 TeletexString, T61String
21 VideotexString
22 IA5String
23 UTCTime
24 GeneralizedTime

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 21 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

25 GraphicString

26 VisibleString, 1SO646String
27 GeneralString

28 UniversalString

29 CHARACTER STRING

30 BMPString

Oll Xl (Exercises)

Given the definition

company ::= SET
{
name [0] [IA5String,
zipcode [1] 1ABString,
CitationType INTEGER,
other ANY DEFINED BY CitationType
I3

where the INTEGER value of CitationType can be 0 = INTEGER, 1 = REAL, or 2 = BOOLEAN, which of

the following values are valid? Assume tagging has been done accurately.

1. “CyberReal", "20742-1911", 1, TRUE
2. 7'60603", “Villaland", 0, 500000.00

3. 0,450, "HomeNet"

4. 'SitCom", 1, 70000.00

Write a module that identifies DaysOfWeek as a BIT STRING consisting of seven bits, one for each
day of the week and the first of which represents Sunday. Write a value of the string that represents
(Monday, Wednesday, Saturday).

Differentiate between the following two representations?

HouseType ::= [INTEGER b. HouseType ::= ENUMERATED
({
Ranch (1) Ranch (1)
SplitLevel (2) SplitLevel (2)
Colonial (3) Colonial (3)
TownHome (4) TownHome (4)
} }

Assume Employee is of type SEQUENCE with the following components: hire date, job title, age,
salary, and office location (a city name). Write an ASN.1 notation for Employee. Give a valid
representation of Employee.

Distinguish among the various kinds of tagging in ASN.1. Use an example to illustrate the distinctions.
Indicate the effects of IMPLICIT and EXPLICIT.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 22 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

6. Differentiate among SEQUENCE, SET, ENUMERATED, and WITH COMPONENTS. In your
discussion, use the following structures as examples to illustrate differences.

a) airport ::= SEQUENCE

{
origin [0] [1A5String,
stop [1] 1A5String OPTIONAL,
destination [2] |A5String
}
b) airport ::= SET
{
origin [0] [1A5String,
stop [1] 1A5String,
destination [2] |A5String
}
c) airport ::= ENUMERATED
{
origin [o],
stop [s],
destination [d]
}
d) airport_list ::= airport
(WITH COMPONENTS
{
origin (o],
stop (1],
destination [2]
}

7. Give an instance of the AirlineFlight example in Structured Types Section that includes a stop in the
Dallas-Fort Worth (DFW) airport.

8. For each of the following examples, name an appropriate ASN.1 data type and write the corresponding
ASN.1 definition.

1. Analphabetized list of employees.

2. One of a movie, play, or sport event

3. Prime numbers between 0 and 15.

4. 110010001111000011111100

5. The local time in hours, minutes, and seconds.

6. A sentence of text.

7. Number of cars delivered, sold, leased, and on-hand.

9. The following data structures are written in C. Write each structure in ASN.1.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 23 of 100

http://www.obj-sys.com/asn1tutorial/node11.html#structured�

NL Telecom co., Ltd

a) struct calendar birthday[2] =
{{{o, ¢, 1} 2 1948} {{

Obijective System ASN1C ASN.1 Compiler Training

A', P', 'R'}, 14, 1955 } }

where "calendar" is a structure defined by

struct calendar
{
char name[3];
int date:
int year;
b

b) struct time depart_time, arrive_time;

where "time" is a structure defined by

struct time
{
int hour;
int minute;
int second;
I

¢) char array[7] = "NETWORK"

d) struct entry

{

char =*word;

int *page_number ;
} index[50] =

{ {"ARPANET", 105}, {"ASN.1", 328}

10.
you produced in the preceding exercise.

11.

s

Write in Pascal (or another high-level language different from C) each of the ASN.1 representations

CASE: Stores in Philadelphia and Washington, but not Baltimore, carry colonial flags. The stores

obtain the flags for 25.99 each. The identification number for colonial flags is cf1783, The Philadelphia
store has 14 flags on hand and the Washington store has 10. Write the ASN.1 representation(s) for this

CASE using the module in this Figure.
12.

Write a definition of NonStopFlights in this Section with the following additional conditions: include

United Airlines and allow both nonstop flights and those that stop in Dallas-Fort Worth (DFW).

13.

1.

Consider the entries in the Table of Contents for this chapter as records in "~ ASN.1".

Which main section headings represent simple records and which represent structured records?

2. Write an ASN.1 recursive definition that specifies a record such as “"ASN.1".

3. Write the Table of Contents as an instance of the record definition.

14.

Write an ASN.1 recursive definition of a binary tree.

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 24 of 100

http://www.obj-sys.com/asn1tutorial/node6.html#asn1_module�
http://www.obj-sys.com/asn1tutorial/node18.html#subtype�
http://www.obj-sys.com/asn1tutorial/node1.html#ASN1�

NL Telecom co., Ltd

Obijective System ASN1C ASN.1 Compiler Training

15. Use your definition of a binary tree in the preceding exercise to represent the following instance:

42
/

/

/

H

50
Lij
i
60
/

30

47 58

Ui
25

ASN.1 Jl= 2&= 229 Oteier 20

TypeReference ::= Taglnfo Type

Ofl Al

Bool ::= BOOLEAN

X 1= [PRIVATE 12] INTEGER

Y ::= [APPLICATION 22] EXPLICIT Bool

Z :=SEQUENCE {aX,bY}

1. TypeReference = A2 X012, OISO0IC}.

2. 2&¥2 (A.2) HEX=E AEGIH, HEE =X 242 =82 28 & = UL

3. S 21X otE(hyphen “ =) & & 2t A ESIH, & M GHE(" —")& =& (comment)
0l =Ct.

Taginfo € MIAIXI(message) =0 212 E & (encoded) Tag £ & 2JEHCE

Syntax is [<Class> <ldentifier>]

<Class> : 00 — UNIVERSAL, 01 — APPLICATION, 10 — CONTEXT, 11 — PRIVATE

[=Z]

QIDEE AH

[

<ldentifier> :

Jz

A ¥1S (Encoded identifier number)

o

[—

A

=]
-

=

S8 A

0

0l

o]

Taglnfo , CIZE taginfo Jb Al UCH.

=

=

Ot doletlt.

flo

Type el =9 otLESl ASN.1 Type

e LU

0z
[l
m

te=& Built=in Primitive (0l, BOOLEAN, INTEGER, etc.)

=
0z
mn
kA

i

& Built—in Constructed (0l, SEQUENCE, SET, CHOICE, etc.)

® T Defined: &AM HAHE Type E A HFX

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 25 of 100

NL Telecom co., Ltd

ASN.1 2| J|=H¢l

Obijective System ASN1C ASN.1 Compiler Training

| Syntax 2| C/C++ Mapping 2 Ot et 2Ct.

ASN1C: Name ::= Type

Maps to(+>) typedef <C-Type> Name;
ASN1CPP: Name ::= Type

Maps to (=>) typedef <C-Type> AS1T_Name;

class ASN1C_Name;

ASN.1 J|& H= Notation Syntax = Otcliet 2 L.

ValueReference Type ::= Value

x
[n

gt el StE * " GIE8C.

Jin
1
HO

NS

rr

ASN.1 Type Ol HO= Type 2 WZEE(Built-in) £= &2 = (Defined)

[—

Value syntax = 21 type 0l 2| =¢stCh.

0dl.) Max—limit INTEGER ::= 10000

LHEE OIoIE el EFY (Built—in Data Type)

1. tHEE implicit, universal 22 A =CH(CHOICE M <2l)

A 227XHa..2)2 AEGHLD, 1 OS2 2442 = 28

& OICH

2. PRIMITIVE(H=&) 2 CONSTRUCTED(S&E) 2 S JHel Et20l RUCH.

3. PRIMITIVE & BOOLEAN, INTEGER, ENUMERATED, NULL, S0l 1,

Hd83 A& encode &tLI.

GIOIE content <

NLT-PD-ASN1-004 Version 1.4 DRAFT

Page : 26 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

4. CONSTRUCTED El2 & JHE ZE&old UAHLF L= 1O 20 E2 PRIMITIVE E£=
CONSTRUCTED encode & E&otd QULE 021 S22 “ containers” L= “ wrappers” d&

Az 2 =+ UL

S8 OI0I8 el EFY (Primitive Built—in Data Types): BOOLEAN Gl Al

1. Syntax: <Name> ::= BOOLEAN

2. Maps to “ typedef ASN1BOOL <Name>;” (ASN1BOOL 2 C 2| unsigned char type OIC}.)

3. Value notation: TRUE or FALSE (& L= HAS=2 TD| =)

Simple Types Tag Typical Use

BOOLEAN 1 Model logical, two—state variable values

INTEGER 2 Model integer variable values

BIT STRING 3 Model binary data of arbitrary length

OCTET STRING 4 Model binary data whose length is a multiple of eight

NULL 5 Indicate effective absence of a sequence element

OBJECT IDENTIFIER 6 Name information objects

REAL 9 Model real variable values

ENUMERATED 10 Model values of variables with at least three states
CHARACTER STRING . Models values that are strings of characters from a specified

characterset

Character String
Type

Numer icString 18 0,1,2,3,4,5,6,7,8,9, and space

Tag |Character Set

Upper and lower case letters, digits, space, apostrophe,
PrintableString 19 left/right parenthesis, plus sign, comma, hyphen, full stop,
solidus, colon, equal sign, question mark

TeletexString

(T61String) 20 | The Teletex character set in CCITT's T61, space, and delete

The Videotex character set in CCITT's T.100 and T.101, space,

VideotexString 21 and delete

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 27 of 100

NL Telecom co., Ltd

VisibleString
(1S0646String)

[A5BString
GraphicString

GraphicString

26

22
25
27

Obijective System ASN1C ASN.1 Compiler Training

Printing character sets of international ASCII, and space

International Alphabet 5 (International ASCII)

All registered G sets, and space

All registered C and G sets, space and delete

X&ts oIS EFY (Constructed Built—in Data Types)

Structured Types

SEQUENCE

SEQUENCE OF

SET

SET OF

CHO I CE

SELECTION

ANY

Tag

16

16

17

17

Typical Use

Models an ordered collection of variables of different
type

Models an ordered collection of variables of the same
type

Model an unordered collection of variables of different
types

Model an unordered collection of variables of the same
type

Specify a collection of distinct types from
which to choose one type

Select a component type from a specified CHOICE type

Enable an application to specify the type
Note: ANY is a deprecated ASN.1 Structured Type. It has
been replaced with X.680 Open Type.

SEQUENCE, SET, SEQUENCE OF, SET OF, 1dcl1 CHOICE 2 et 0l ULCH.

“ Hole” Bt o2& S ECt. (ANY, ANY DEFINED BY, EXTERNAL, JIEt}.)

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 28 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

& Hol=l ElQ (Defined Types)

HY HdAHE Type 2 & SHC O AL

X = INTEGER
Y =X
ddeE DE= UM delE EYES X St

typedef ASNTINT X;

typedef X Y;

ASN.1 2 2&o & AlEXH(identifier)E M3otH, TS Ul JtX 2eHA=2 REELC.

00. UNIVERSAL &E=2 22 et

01. APPLICATION & X =& JHA Ol

0p
OHf
e
o

10. CONTEXT AtEZotls S8 =%

]
w
n

o

11. PRIVATE AtEX oIS
ASN.1 OlA AtE3t= CONSTRUCTED(S& &)

1. UNIVERSAL (constructed) SEQUENCE :

00 =Mt Ae g2 2AE. &

ﬁ/\-lg T&Gt= il (entity) Ol 2IaH bH 1|%‘2‘— ‘BA'E},
2. SEQUENCE OF : E= &40t g8t &= & DEEAHUL HIZHOIH =AMIt U= HE
3.SET: 2 JHe At dEFCoz da 3 £+ U= DEEHD =AM e &9 2AE

4. SETOF : E= &40t s2et €2 2= JEEHL HIEAHOIH, =AMt 8l E4° BHE

5. CHOICE : O/cl g2o/& &9 MENA &

JE
Q

= XN =AM 8l €9

1-3-2 Sequence 2+ Set 2 X0l &

ASN.1 OIIA Set=S AlDI

rr

20l A=0 1O =29 &tk SEQUENCE 2F SET OICH.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 29 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

SEQUENCE = C 9 struct 2F =8 JHE0|C}.
SET 9 HEe Colle 9, 20| &= U C O struct M =AJF 2208t type 22 EH
=

Seq ::= SEQUENCE {
first INTEGER,
second INTEGER

}

Set 1:= SET {
first INTEGER,
second INTEGER

}

segVal Seq ::={ 10, 20 }
segVal?2 Seq ::={ 20, 10 }
setvall Set ::={ 10, 20 }

setVal2 Set ::={ 20, 10 }

segVall I seqgVal2 2l AR0= ME UE 20l X2 setVall Ut setVal2z = S8t g0ICt.

1-3-3 Sequence 2+ Sequence Of 2 X}0|&

0l =2 0|80 HI=otXl &3 L= JHEO0ICH SEQUENCE = C 2 struct 0112 SEQUENCE
OF = C9 Array & [] ol aHE=ICH.

Name ::= SEQUENCE OF INTEGER = int Name[] 2t S&st 2/0|0|C}.

SET 2t SET OF & R AlGHCH.

1-3-4 Sequence Of & Set Of 2 X0l &

SEQUENCE 2t SET It XIOIX & Array W gt2l =AJF 201€ JtX=U 6422l Xt0I0ICH

SeqOf ::= SEQUENCE OF INTEGER
SetOf ::= SET OF INTEGER

seqOfVall SeqOf ::={ 10, 20, 30 }
=1

segOfVal2 SeqOf :: 20, 30, 10 }
setOfVall SeqOf ::={ 10, 20, 30 }
setOfVal2 SeqOf ::={ 20, 30, 10 }

seqOfVall 2 segOfvValz = CIE g0l XIBF setOfVall & setOfval2z = s St gt0ILt.

1-3-5 Choice &

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 30 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

CHOICE = C 2| union 1t =<8t JHEO0ICH. CHOICE Nl gt Hddg M AAHE N Us
Element & GILIE AtE0tH = Ch

Choice ::= CHOICE {
int INTEGER,
string PrintableString

}

chocieVall Choice :i=int: 10
choiceVal?2 Choice ::= string : “ asn.1 is fun”

I MWH= 1997 & ASN.1 EEZ2 2 H0IH : &2 int 2 string & Choice 2
Alternative 2| identifier £ Jtel2!Ct.

-

1-3-6 TLV Encoding (BER)

E4419 AFE2E = Transfer Syntax 2 TLV A2 F 8O T = Type(ldentified by tagging)0l 12
L& Length 22l V= Value O|C}.

| TYPE(Identified by tagging) | LENGTH | VALUE |

Type & Class, Form 12|11 Identifier code 2 3JtXl A JIX 1D UL

8 7 6 5 4 8 2 1
C(Class) | F(Form) | ID(Identifier)

Class 2 HIE(bit) = OfcHet 2L},

00 UNIVERSAL : & 80l 28 &= B0t =0 UCH

01 APPLICTION : &E& 012 IHIOI £ <18 BH=S0l 2 ZHOULCH

10 CONTEXT : ZAIHe Ei02 2=l context HOIA THAl AtHEZE = ULCH
11 PRIVATE : AIEXIS 2I&t EHJOI P

Form 2 HIE(bit) = Otk ZCt

itive encoding (value contains data)

0 PRIMITIVE: (&+=#&) Prim
D : (X&t&) Constructed encoding (value contains 1 or more TLV’s)

1 CONSTRUCTE
D (Identifier code) = QIDES AlHIIO| HS(},

Integer Type 2 GIE SHEH 2HHGHCE.
= INTEGER 10
T L Vv
INTEGER Vel 20| 10
ANl MEEesE A2 TLVO HE=CH

T= INTEGER Ol ciZdte gtez2 M KXH &L Value = Integer 10 2 LIEIHU= |
L o Length = INTEGER i 2 Z0l0 Cisr E2E Z 10 UAH ECH =2oH0F & =d2 icl
HEE= dEHUX L=U= EOICH HE 01802 i= AFEXE 28 210IC0

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 31 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

+Boolean OlLt Enumerated 2 20| Simple 8 Type & 20l= TLV
S XI 2, Sequence, Set, Choice 2t 22 &d=20l= CtE Simple Type 2
HEE O &CH

Seq ::= SEQUENCE {

first INTEGER,

second INTEGER

}

segVal Seq ::={ 10, 20 }

Seq 2 ZER0UH TLVE VEZ0 SEQUENCE 2 element 0l diE &= INTEGER 2! first 2F
second & LHE0| TLV HEHZ SOHIIAH ECH 012 OEHSOZ LIEHHH OfeHt & L.

T L \%
SEQUENCE Vel Z0lx T L \%
INTEGER Vel 20l 10
INTEGER Vel 20l 20

* SEQUENCE 2 L 222 element 2! first &t second & 20| 25E LIEFHCE.

TLV Encoding 0IM Mg =0I8t Type 0l Choice 20 Choice 0l siEdl= Type 2 EiCt.
Choice = alternative aOﬂ/\-l OILIE AtESHI| 20, &MZ ¥&8&E=E gtlle AEE
alternative 2 Type 2t 2 TLV 2 HEHE < =Ct. Sequence & Embedded Format = AR
Ct2XH &L,

NULL Type OlL} SEQUENCE OF, SET OF Z12l1] Optional 2 At&dtl= Z<, Length It 0 ¢l
2T LMSICt= AFAIOICH Z2WE2=Z T L(0) 2F LIEFLIHI =ICH

1-3-7 Tag & <&
TAG 2 Data € AS2H0l 8% Al Encoded data € +4IE [LIEILI= SHES ol Z
ISHO0ICH 2tes HE SHES & OlGHE £ UCH Ot 22 SEQUENCE 2 82

Seq ::= SEQUENCE {
one INTEGER OPTIONAL,
two INTEGER OPTIONAL

—

segVal ::= Seq { one 10 }

0

12 20l Encoding & T(SEQ) L T(INTEGER) L V(10)22 EUWHOHZIC Lt OIS

|

2=A6ts S0 M= TNTEGER)JE one 21X two Q1K & = Qe Bt&0| S =Lt 0|2
oA A20HE JHE Ol Tag OICH. 0l 20l =dZ0AM decoding & %= Sl #22
2220l= Oofchet 20| Tag BEE F=Jloll AFZ8HCH.

Seq ::= SEQUENCE {

one [1] INTEGER OPTIONAL,

two [2] INTEGER OPTIONAL

}

segVal ::= Seq { one 10 }

o ZL0= T(SEQ) LT([1) LVOIO)ME 3HMe Tag AEIF INTEGER UHal [1]19

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 32 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

HEIJI BN ECH £=A=0AMe [1]10] one S 20lots 218 2I| &0l V(10)0]
integer type Ol2te HS & = UCH, Z2UESZ decoding il 8a SHIIH SFH =L
012t S AIGHH Set It Choice 2 R0 % Tag It AF2EIC}.

1-3-8 IMPLICIT TAG, EXPLICIT TAG, AUTOMATIC TAG

Seq ::= SEQUENCE {

one [1] INTEGER OPTIONAL,
two [2] INTEGER OPTIONAL
}

segVal ::= Seq { one 10 }

Tag 8% 220 A 22 seqval 0l T(SEQ) L T([1]) LV(10)22 encoding &0 &CtD

St e 0l IMPLICIT TAG @ 220 sHEStCH. Implicit 01 2/0lgte e [1]12

Tag @20t2 =2 AHIC type2 & == UJ| S0 =201 X2 Type 2 AIE6HA 2=Cl=
1o 2 9|0|8tL}.

Ol2%= =2l Tagll 822 ArEdtD &H Type 2l 8 £t BUHESE dt= Option 2
AEE £ QU 0|E EXPLICIT TAGOl2t) at2 0 220Ul= encoding Ol OFel2F &0]
S| &ICY.

T(SEQ) L T([1]) L TUNTEGER) V(10)
OlatStHZ IMPLICIT TAG 2F EXPLICIT TAG 2 AlEdl= #22H0ls SY9& 2H0l2t=
encoding Ol Ct2 == AdS QIAIBHOF &HCF.

AUTOMATIC TAG 2 1997 H0ll 20HE JHELZM A2 22 320 220 =HY2=2
730 TAG= E0l= A0l AFEI| 20 UAsH2=Z Tag=s €0l JIsOICH TUGIAE
Ol JIs2 Args H=HC2=Z dotld AKX TMN #AS0| Ol&H AU T2 0
ANEEHE €2 A2l 8l

= =2

1-3-9 =28 AS 1 AL AIE

ASN.1 722 SH OI/\LI Node O} EEE F1 8| ot 20 & %OIE}.ASNJ
A0l 0 20 0™ EEE Jikle A2 E20 =2 A0ICH M2kA ASN. 73
EAS ol 2 Node I} S8t &2 Compatible 8 ASN.1 722 JIX12 °'O10F é Ct.

1-3-10 ASN.1 #22 Compatibilty

ASN.1 #2S HE HSHLE, Zoil& ASN.1 #HS 282 flol AIEot=s =0
AtEZot= Tool 2 Higt Ate S22 Qloll LISUZ2 =80l 2L0otH =Ch Ol JElsHA
fl= 20l =3& ASN.1 730l H&H JIES ASN.1T #2310 Sl Al 2HE LHAIIIX
2= ot HE0l &I =L

OlS2 AEXE fE A

ASN.1 #2& 2= 0182 AMEXNE @I ANOICH OE =K, i:=INTEGER 10 Ol Al &
Ol52 AISXE < 201D 20 oHER20A 2= i E newname 22 HI RO T

of 2L

DefinedType 3} Z& AIE
Ofchel OolMe 20l INTEGER E &&E AIEotE X, Integer & Type & define 6t AIEZ6HE X

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 33 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ol

rr

S2AGHCEH Element JF Sequence U Set 2 HR0UHE s2otH HE2S L.

Seq ::= SEQUENCE {
one INTEGER,
two INTEGER
}
Integer ::= INTEGER
Seq ::= SEQUENCE {
one Integer,
two INTEGER
}

ANESHA &= #A8 IR DI

Workstation OILt Windows 2| St30lA= HZelol CHet HMetol H2l SiXI8H Embedded
SAHNA ASN.1 23 XS ol Z20= HZ20 st 2SS JIXAH = 0l H=0l=
ASN.1 H2A0AN 2z AIE = ol s il =2

= BICH o XI2H ASN.1 #=20I2 P& AZALH A Mo HMHSt= 2101 dXle

oL LY.

Select ::= CHOICE {

this SomeSequence,

that SomeSequence,
neverSequenceNeverUsed

}

ot elle AHE

never Jt & 3dt= application Ol A

NE=3
SequenceNeverUsed O type AL HIIM OHMEI= ALE0H = S AMHE =+
UL AtEotXl £zt OtHE AFSotH parsing 0l 228t code 0| MACD| 20
1 =29 ROM§ ZQZ ol MEO0ICH
aror s Al AN HMIHE element JF =8EE HR0HEsE M 20| LAHSD?
2HESICH =41 S0lA 40| 2JtsotCh= Parsing error JF & M6 = L.
sdst DefinedType & S8
OfcH et 201 =8t definition OlLE THE 0I5 S AMEol=s ZE2IF 2t= UL 0l=
HXXINE & F0l O 20l MHAY &= Aes Its40l Y= 0l B0 StLtSl type 22
S0t F=M formating J_} parsing 0l 228t code E2 g = UL

Select ::= CHOICE {
this ThisSequence,
that ThatSequence
}
ThisSequence ::= SEQUENCE {
one INTEGER,
two INTEGER
}

ThatSequence ::= SEQUENCE {
one INTEGER,
two INTEGER

}

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 34 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

?/2 Choice & Otei2t 20| HtE == ULt

Select ::= CHOICE {
this ThisSeqguence,
that ThisSeguence

}
ASN.1 Compiler

8D| o= FHE FAUH L= g2 MR D 0= ASN.1 Transfer Syntax Ofl
2l byte stream & CtS O FO{0f 8tCt. 1cHOF PDU HEHZ SaIS2 & = U
= O0|Ct. ASN.1 Compiler = A2t ASN.1 #&E2 2HEH, Ol0 CHst Validity £
2015t 10, header file It & JIXl 82| cfile2 =0 WL - Formatter & Parser.
Header file 2 AIZEXIL Y type & HLUGHH AIEE [AtE06t1] Formatter = AFEAHE]
2t= bit stream 22 HIHN == SE= StLt. Parser= 0l BHHZ bit stream = header
file 2 structure Bt 2 Bi& AlHAZTz= Jls2 &St

5.: A2 OH
rr
ol o
m

OlcHE <ol BIE = 2C. 0l= S& ASN.1 Compiler 0l sHE &= LHE0] OtLIGH,
ASN.1 Compiler OtCH M2l 82 22 Cr2H LIEFLC.

Seq ::= SEQUENCE {
first INTEGER,
second INTEGER
}
segVal Seq ::={ 10, 20 }

[Header File]
"asn1header.h"
struct Seq {
int first;
int second;

}

MEXE 12 header 2 HUHES M SIS fIst OreHel ASN.1 gt2 Bt E L
[AFE X Code]

#include "asniheader.h"

struct Seq asnivalue ={ 10, 20 };

0lE &4I5tI| fHAM ASN.1 Value £ bit stream 2& B3R A € L.

MME ccode & AHEM ASN.1 2 2t type OCH formatter/parser I} MAEES & 2 QU
AME &= interface = Olel b 2 L.

/* returns length */
int format_Seq(struct Seq *value; char *bitStream);

AE A= EHIE asnivalue formatter ff € =™ bitStream 0l ASN.1 encoded Jt
MAC D 3 20|t return D HEAICH Encoding T A g2 LAN I} 22 E4 1HEsS Soll
AHCHE Node 0l Mol &ICH.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 35 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ASN.1 Encoded gt2 =4l 212 ™ 0t parser £ 0l &5t0 program M ALE Jtséet
structure 2| EEigE HtRHA =L,

aa

Parser_Seqg(char *bitStream, int len, struct Seq *value);

&I HI2l ASN.1 header, formatter, parser = &% al b &l)
212 o= ASN.1 Compiler A AlEE= JHECHS MEGID] st A2 2, OlcHE oA
Z|CHst Sh=3 Al2] 2d0|Ct.

Object Identifier

Object Identifier= 018 U Z OSIWA AFEE 12 U= Object E LIELHDI {8t ID OICt.
Object Identifier= {29352 0}t 20| MHFSM OleHet 20| O|E0ILL 0|2 =XE
S20otH AFZ2E O &ICH { joint=itu—ccitt ms(9) smi(3) asn1Module(2) attributes(0) }
ASN.1 0l= OBJECT IDENTIFIER type 0] XI& & Ch.

2 49X S22 A=
ANY Type, EXTERNAL Type, SubType, Macro, Z12l1) Object, Para meter g

S ZEol0 X2 WE0l 8FEN UK AL RS HEsS E&st 2= ASN.T
HES Oloiots X2 &4Es =50 2ol

ASN.1 Definitions
ASN.1 #Z=2 JtXlLd &Y
=0 0HE YA ==

F 23 IMPORT & type reference Lt value reference €
%:1 o
Module Database & AIEZ06}

TU #2320 dHE0 QA= 24012t ITU ASN.1
ULH.

st ASN.1 Definition 0] 228t 32 ITU #20M ScHIASN ArEdli0F ot=0dl &L,
JIEN @2 AN, ABIHOZ 0| A2 = ASN.1 definition 2 2 20l= Tool Vendor Hl Al
ME&L, 258 dR20= 0IR0A 228t ASN.1 Definition =2 DH@EP AtEotH =& 80|

iz AtE Jbtsotlh

http://www.itu.int/ITU-T/asn1/database/index.html
http://www.itu.int/search/index.html AIS

1-4. BER 1t DER

BER 2 ASN.1 2 D olRY R=(Basic Encoding Rules)2 LIEIE LBtA 0l 0|5 LICH
BER = ITU-T &1 X209 2 X.690 0l HZH USLICH. BER= S HAE Soll 885
= A= Y9 ﬁE 192 ASN.1 UI0IHE e2Yot= GtLtel =2 A LICH ASN.1

HOIHE 2 RYole O w22 = DER(Distinguished Encoding Rules),
CER(Canonical Encoding Rules) % PER(Packed Encoding Rules)Jt U&LICH

otAXIBH ASN.1 2 1

HERD HUlM wetkl= UAIXI= ASN.1 aEHE &0 wetEthd

E lsLIth [etA ASN.1
iRy
tin

NHZ2E AR HOIEH €A017] R0 O7de QU2 858 2
SEHQ =4 OOIH a2 UEKAIAMUA 7&—~°* = Us %“%_i
USLICE Ol Al2%l= 20l BER(Basic Encoding Rule)lt DER
Rule)OICt. BER 2t DER2 2+ ASN.1 HEHS HIOIE EAls HESR
SElZ encodingoiz=1 X2 CtAl ASN.1 EEiZ decoding dii==
USLICH

AlFHOF & 2240
gwshed Encoding

= A =
RR-ES e

JH—JG
0z 0F 3
19

H

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 36 of 100

http://www.itu.int/ITU-T/asn1/database/index.html�
http://www.itu.int/search/index.html�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ol M BER It DER 2419 encoding &gl 2 X0IE Z20|A 2£&LICH
| CtE& =01 =Mat0, BER Ol DER 2L 2 &< 2l encoding

lo &

1-5. ASN1C & ASN1CPP

ASN1IC & ASN.1 9 C AA DE HIUHLALICH 0 HIeH= ASN.1 2 2l
F ot Ctypedefs 8 E&ol= ol YW encode 2 decode &4+=2 E&odl= C AA
I s MAstH SLICH

gomm=—==ASN1C

R

Batn staneruney EN S ODE
oR FrEREFI YOUR APPLICATIONCODE [*FFFrh
OBIECTS :'I.- o i
| N ASN1C GENERATED CODE an
) DECODE ™™
- 4 4 4 4 4 4] asH1C RUN-TIME LBRARY CODE || € 4 4 4 4 4

ASH AT EniCoie: T tdi

A& ZEIF ASN.A
Bl deE e RS
L

o

St ASN.1 run—time library € Z&otld UYes
2

=y
fo
oy
E_l
e

210l
HIAIXI2l encoding 2 decoding 2 ®IoHAM 28 THIIXIE M3 LIC
ZHEN et ZES JES £ A= ANSI EF9| AAI2HC ZEE MASILICH ASNICPP =
ASN.1 2 C++H&E MBLLICH ASNICPP EAl S2&t J|2 oY &1 2i0lE2elE S&6H,
L5t encode/decode S-S E0 s &S WSS &S wrapper 2cASE MAELIC
Ol= e C&422 CIHHOIA o 2H S0 C++ &&F2 &AAS ItsdtAl ELIC

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 37 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ChS2 OE ASN.1 3tgd HEHEN HluE=s SEFSLLIOH

AH
S

0x
i
kU

DES ALEO0l st 2toldlA HIE0] OtE

Ch

o

SUS0AM ArEot)| ?I8t HEY 2lol=Eeiclss Eest AADE
ITU X.680 OlAl E<2lgt ASN.1 22 Wteole s4.

Object specification (X.681) 1t parameterized type (X.683) &0l st A2 E X

Rules (PER)UI (2= CIRH/CIRAHSE M4

e Zd= L& O 2cHeE x.208 2 x.209 H=ES1 of?l &

ugds Z=th

fol

e ASN.1 to Java or C# XI&LICt.

Compiled
Generated
C/C++, Java,
or C# code
\/ =
Encode Binary _ ==
Data
ASN1RT Encode/Decode or
Run-Time Libraries KML Text Ti-r

Objective System ASN1C Version 6.1.3 0| SAIZH & ASLICH
® Visual Studio 2008 Xl &.

® Java/C# static enumeration 2Z& M4 X&.

® Symbian OS Xl &.

® X.680 amendment 3(ISO date/time types) XI&.

® ASNIVE ASN.1 (Viewer /Editor) GUI tool XI& (Optional)

Basic Encoding Rules (BER), Distinguished Encoding Rules (DER) 12l Packed Encoding

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 38 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

® Distinguished Encoding Rules (DER)2 X<

® X.509, PKIX 2 PKCS.&2 ASN.1 2| ot

St AsS & OHA) IEMA RANAP, NBAP 2F
RRC &2 MZ& UMTS &t 3GPP AHE & ItAl DEMA
® Large integers(>32 HIE) XI¥
® UHICIE 8F2 {st D ZHEQ DEMHN s FIECZ saE JIsS. Windows,
Solaris, Linux & <8t Trial version 0l [USLICH. L2 AIAES A HEO0| ZL6IAIH Het

FEANL.

Objective System ASN1C/CPP S&
® ASNIC 2 ASN1CPP = Packed Encoding Rules (PER)S XI= & LILCI.

® Open Source SEIY 2i0lE2{el AAR

f = 0132 20l &322
HAHOOIEStHU ZEotl=s JIsS MEE

LICt.

 —
el
=}

-

® Standards Based XA |TU ASN.1 == AR ELICH 0|®e EEX 20| AIEJts
gtLIC.

® [lexible Architecture MAE RE AAQ SEIY DEE= ANSI HEC/C++ RE0IBE=Z

(=)
st 23202 ZEe 4 AUsl

Q-

® FEasytoUse ASN1C ZItdei= ASN.1 9 =e|&Ql H&1 LXIcts C/C++ 2ADEES
ST

® G4-bit libraries A& & LICH

1-5-1. Objective System ASN1C Compiler Q&A

ASN1C 2t ASN1CPP I 0l CHet FAQ 2F 110/l CHet o Z2H:

o <EI>ASNT ZMLAHZ MHE AAIEI ZEEIs SULMN?

o <GEHDH, MHdE DE= ANS|I E=0|H, £& MEBON ZEZNH U= run—time 2t0lEed2]
AAPDE LS ANS| EEQLICH WetAd 2t8Est ANSI & AADE I XI01D] 20
E4Y5| 3rd-party 2t0|E2|JF 22 80| TIE S¢EC=2 ZE0| Jis&ELt

o <3IE>H, XM AATEIN MBI HEo LetEo=z AHICIE

= £dt £EF9 encoding/decoding &S #%SD
A g & £ UASLICH =, JIE I2H0 ’MLAEO AIAEN XX
S ol

UA ELICH

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 39 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

o <3B>Rc2I2 ASN.1 Z= H= & AN SHatE ASN.T A REE
Lot Ghee Z2HENMN AI2E = JASLIG. BEEstE AHe F JHX tls S
ZSLIC.

ElUMTS 3GPP Applications

ElComputer Supported Telephony Applications (CSTA)
EITAP3

ElMobile Applications Protocol (MAP)

ElAeronautical Telecommunications Network (ATN)
EIH.323 VoiP related protocols

EIT.38 Real-Time Fax over IP

EIACSE and ROSE

ASN.1C Compiler License QA

CtS2 ASN1C 2 ASNICPP ZItcd2l ctoldl A0 25 Q&A LICH

o <& E>node-locked ctO|dlAEH HE AHQIDIR?
<B|E>node-locked clOldlAE= HESES & M 2ILHE AXE BEEH WE2 AIAE
E22H 29 He =29 HFEES I clOldAE MABIAH ELICH MetA
AIMLHE EXIots ZFEH(hode) HAME SS6HH S&ot=s cloldlA EIlsS &L

e <A E>node-locked ctOlMlAE= CHE ZFH(node)2 AAS ZEGH= AUE HAO JALIKR?
<BlE>0tU R, &-EtY etolEdeltl=
CIAE 2toldAC D12 Sotille TOE OS #3822

I

o SAE>DH0 standard HAES FSCHH, S-EtY 201Ed2l AADEE el NSl

<BlE>MEH o JH(redistribution license)= S22 -EtY 2l0lEH2(AA B ED}
ofLieh el diolegiel HEZ2 MUlEol=s HS ol LICH 2te, A MESZ AA DEE
THBHIZGED A CHH, 0lH2 2ol A & 9l(license agreement)2t= 22lE AIE0I22 £
CtE 20t 2 ReLICH

o KER>AMAUHN 2ot =2 AIEXI U2 A2 HaEe 2 Z2HEI JASLICH
JE0H 2REHeE IHY MBI FMDYHE APE = JAUR?
<S>0, JtsELICH OdL 0l 30l sS=2 AZEX 2t0ldA I PELICH node—
locked 2tOlMIA M2 HAOAHIL At = ATAHOIESS 222 0|82 EL&dte

o KAI2>2 40| AZXHmultiple—user) ZIO|AAS A DJIHEQIQ QULIR?
<B|E>0, 00| ELICH R4 F=IHXQl g asic ctO|AIADL ELICH (BHeF, 2-EFY
A2ATPEE HBot= standard 2tojdlAZ ZAAMOHH, LISO0 user 2 F=IHHl THE
2Ol A= basic 2t0ldABLS Rt ELICH)SDE 2toldl AL D22 OIS
2 &LICH :5 user pack: Price of 2 additional basic licenses.10 user pack: Price of 5

additional basic licenses.Site license (AFE XF£=2] HI&t0| 85): full-source version Ol
X.I ni==|

o O

=
X >
>
rr
oy

o CAIE>OCH) HIMYLSE AXE ZEHII 6 SHE0I2tH HEH ROHE o0 otLIR?
<BEDOl ERE= 249 AZEXHmultiple—user)2t Hls=st HRLICH. SteF standar

(d HES
2 eCHH, 1 JHS| standard ctOlMA B 25HL) LHH K= basic ctOldAZ 2 oHH
SLICH fiLiotE B-Eg AADE=E ZE SHS0 UotH S2ot)| W20 2% ofLgt

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 40 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

standard H&E =2 P&

o
o
2
I
I
10
Il
b
O
2
rr
O
QO

w

o

<AB>MEE2 HEOZ Y 0|Este &H2?
<gE>0H0ld HXIHES HZ(Minor patch releases) JI=X& AHlA(support period)
J12E01 AUE &stat 222 LH CE2UCH X 2e2Zx2s HAE HESH A& SH
Aelol HEtE o0l CHO .v5.01,v5.02,8). &tH, =3 JIs9
SOY0IES(HESNH 5.1x or61xo) HADE DX MPlA J12401 XILEK 2QUCHH
JbsELICH d2iU 012101 24 A0Y0IEE 20lot=e 212 OtELICH Bt oz
SAOY0IE SU2 M22 HEE JIs0l O LOHKID] H20l o HE S0 O HI# D20
S0, WelA o HED A HES XHHetsS XI=otd ELUICH el JIsXld MdlA
Hetoiztol Xt &0l EOH0IEE GHAHl &H, 50%2 Jt=stolg Mg 8 ELICH

BE2>)|=XE MHIA HDRE A8 ==
<BIE>O, e MBOHAS 20% HIES XN2S6tH 1 ‘g?_F Hebte AE8g = UsLICH

<ES>OUE A MBLEC0 o J1Z0l 2 0lss Jote?

<gghH<cls dAs BIIZEE HE22 M32 JiEs 4dguUt. el
AW E2 JIse WL E MSote ASLICH JHA01 THE 2AS] Hl
oo oA SEO0ILH AMBlA2 201 E0Xl= A2 20 otgLt. XS =elst
Zots NssSH U2 20tA ASol 2A1D] BHEILICH fels DA S0]
KAOIA O RISO0I O JHXIOF JAL=XKIE BtHoll FI1E BHELICH

un +H

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 41 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-1. ASN1C ASN.1 Compiler Software & X|

Version 6.1x of the ASN1C compiler software is packaged in two separate distribution units:

® A System Development Kit (SDK) unit that contains the compiler and development
libraries, and

® One or more run—time deployment units containing optimized binary libraries for
deployment of a finished application.

2—-1-1 Microsoft Windows Distribution

The Microsoft Windows version of ASN1C is distributed either on a CD and/or electronically
over the Internet. The distribution files are self-extracting, executable setup files. The
format of the filename of the SDK unit is as follows:

ac<L>v62xw32sdk.exe

where <L> would be replaced with a single-letter language code. Possible values are p for
C/C++, jfor Java, or s for C#.
Run-time deployment packages have the following format:

rt<L>v62xw32<TYP>.exe

where <L> would be replaced with a single-letter language code and <7YZP> would be

replaced with a code for the package type. Possible values for the language code are p for

C/C++, jfor Java, or s for C#.

The type code would contain information on whether the library is licensed per—host (limited)

or unlimited, whether source code is included or not, and what encoding rules are supported.

For example: the following would be an ASN1C v6.10 run-time deployment kit for Java:
rtjv620w32ubb.exe

In this case, the ubb on the end stands for unlimited, binary, BER/DER.

ASN1C System Development Kit (SDK) Installation
The procedure to install the ASN1C compiler and run—time libraries is as follows:

1. Double—-click the SDK installation program kit executable filename. This is the filename in the
format described above.

2. Follow the setup program instructions.

3. You should have received a node—locked license file (osys/ic.txd) to enable the compiler to
run on a given node. Copy this file into one of the following locations:

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 42 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

a. One of the directories specified in your PATH environment variable, or

b. In a different directory and create a new environment variable name OSLICDIR that points to
this directory, or

c. Into the same directory as the ASN1C compiler executable file (asnic.exe)

If installation was successful, you should have both a graphical user interface (GUI) compilation
wizard

available as well as a command line version of the compiler. The GUI wizard can be tested by
starting the

application and entering the data requested in each of the dialog prompts. The command-line
version of the

compiler can be tested as follows:

1. Open an MS-DOS or other command shell window.

2. Change directory (cd) to the compiler root directory. The default directory in the setup
script is
c:Wacv<version> where <version> is the version number of the compiler. For example,
c:Wacv620 is the default root directory for version 6.20 of the compiler.

3. Enter .WbinWasnic from the command line prompt. You should see a usage display of
compiler command line options (these options are discussed later). This indicates the
compiler is properly installed and working.

If you get a message indicating the license file could not be found, please review the procedure
in step 3 above to make sure it is installed in the proper location.

You should include the <target>Whbin (ex. c:Wacv610Whbin) directory in your PATH environment
variable in order to run the compiler from anywhere.

ASN1C Run-time Deployment Kit Installation

The deployment run—time packages can be installed at any time after the SDK is installed. They
are not necessary for basic program development. They should be used when an application is
ready to be deployed. To install, do the following:

1. Double—click the installation program kit executable filename. This is the
filename in the format described above.

2. Follow the setup program instructions. Note that the root directory for the
installation should be the same as was specified for installation of the SDK
package described earlier.

The result will be additional library subdirectories of the form /ib_opt added to the directory
hierarchy.

These contain the optimized libraries. To link with these libraries, either the makefile(s) or
project files used to link the application must be changed, or the subdirectories must be
renamed. For example, the existing /b subdirectory could be renamed /ib_nonopt and /ibopt
could then be renamed to /b.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 43 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Documentation Installation

Up-to—date documentation is always available online at:
http://www.obj—sys.com/docs/documents.shtml

If a CD was purchased with the software, all applicable PDF document files for a particular
configuration of the software will be available on the CD.

Compiling and Linking ASN1C Generated Code

When building code generated by the ASN1C compiler, you will need to have one or more run—
time source directories in your include path to compile the generated code with a C or C++
compiler. The run—time source directories are rtsrc (common), rtbersrc (BER/DER), rtpersrc
(PER), and rtxersrc (XER). To link, you will need the /b or /ib_opt subdirectory in your library
path. This is where all of the library files are located.

Testing the C or C++ Run—-time Components

The default C or C++ run—time libraries for Windows were built with Microsoft Visual C++ V6.0.
Other libraries are available that have been built with the Borland C++ compiler (v5.5) and with
the Microsoft Visual C++ v7.1, v8.0, and v9.0 (.NET) compilers. If you have the version of the
product that includes run—time source code, you can rebuild the run—time libraries using any
ANSI|-standard C or C++ compiler.

You can verify operation of any of the different run—time libraries by executing the sample
programs. These can be found in the sample_ber, sample_der, and (optionally) the sample_per
or sample_xer subdirectories.

For example, we will assume that you installed ASN1C for C/C++. To test the BER C++
encode/decode capabilities, do the following:

1. Change directory (cd) to the .WcppWsample_berWemployee subdirectory. Execute the
nmake command to build the writer and reader sample programs. nmake is utility
program that comes with Visual C++. It may also be necessary to execute a Microsoft
batch file named VCVARS32.BAT to set the path information so that the nmake utility can
be found. (Important note: this assumes you are using Microsoft Visual C++ on your PC.
Some PC specific include and library directories in the makefile may need to be
changed to get the samples to work on your system. See the README.txt file for further
details).

2. Execute the writer.exe program to encode the sample record. The results of the
encoding will be dumped to the screen and saved in a file called message. dat.

3. Execute the reader.exe program to read and decode the contents of the message. dat
file. This program will read the encoded record into memory, decode it, and then print
the contents of the generated structure variable to standard output.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 44 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Testing PER is similar:

1. Change directory (cd) to the .Wsample_perWemployee subdirectory. Execute the nmake
command to build the writer and reader sample programs.

2. Execute the writer.exe program to encode the sample record. The .a switch can be used
to encode a record using aligned PER. The .u switch encodes a record using unaligned
PER. The results of the encoding will be dumped to the screen and saved in a file called
message. dat.

3. Execute the reader.exe program to read and decode the contents of the message.dat
file. The .a or .u switch must be the same as that specified when the writer program was
executed. This program will read the encoded record into memory, decode it, and then
print the contents of the generated structure variable to standard output. This test can
be repeated for XER as well by going to the sample_xerwemployee subdirectory and
repeating the above sequence of steps.

Per—host License Deployment Issues

If you purchased run—time libraries that allow for unlimited redistribution, then all run—time
license checking would have been removed from these libraries and all that must be done to
deploy is to make certain that the code is linked with these libraries.

If per—host run—time licensing was selected, then there are two choices as to how applications
are deployed:

1. The run—time license information can be directly compiled into the application and then
the application deployed without any external files, or

2. An external binary license file can be deployed with the application to allow it to run on
the licensed hosts.

The first choice is done by default every time ASN.1 source files are generated and the resulting
code compiled and linked into an application. Information from the osysi/ic.txt file is transferred
to a C header file called rtkey.h and this information is included in the generated code. This
allows the application to run on all licensed hosts.

The second option is applicable mainly in situations when a finished application is to be run on
different hosts than were originally licensed. This can happen if host names are changed, or
additional hosts are added at a later date. It might not be practical in these situations to rebuild
the application in this case. The alternative is therefore available to create a binary license file
and deploy it with the application to allow it

to run on the newly licensed hosts. The procedure to do this is as follows:

1. Use ASN1C to generate an rtkey.dat file by issuing the following command:
asnlc —genlic

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 45 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

The rtkey.dat file will be created in the directory where you issued the command.
2. Copy the rtkey.dat file onto the computers on which you want to run your application.

3. Set the ACL/CFILE environment on these computers to point at the full path to the
rtkey. dat file.
In the case of Java, the procedure is different. In this case, the deployed asnirt. jar file must
contain up—todate license information. This is done by executing the setkey.bat script for
Windows or setkey.sh script for Linux/UNIX in the Java subdirectory after the license file for
ASN1C is installed. This must be done whenever the osys/ic.ixt license file is updated.

2-1-2. UNIX Distribution

Installation of the Linux / UNIX version of ASN1C is similar to the Windows version except that
the distribution files are packaged as gzipped tar files. The format is the same as Windows
except that the extension is .far.gz instead of .exe. To install, do the following:

1. Copy the distribution file <distfile> to the top—level directory where the compiler is to be
installed.

2. Unzip using the GNU unzip tool:
gunzip <distfile>

3. Untar the file using the following command:
tar xvf <distfile>

This will create a directory tree structure with * asnic-v<version> as the root.

4. You should have received a node—locked license file (osys/ic.txf) to enable the compiler
on a given node. Copy this file into one of the following locations:

a. One of the directories specified in your PATH environment variable, or

b. In a different directory and create a new environment variable name OSLICDIR that
points to this directory, or

c. Into the same directory as the ASN1C compiler executable file (asnic.exe)

To test if the compiler installation was successful, do the following:

1. Change directory (cd) to the compiler root directory. The default directory in the setup script
is
.Jasn1c-v<version> where <version> is the version number of the compiler. For example,
.Jasn1c-v612 is the default root directory for version 6.10 of the compiler.

2. Enter ./bin/asnic from the command line prompt. You should see a usage display of compiler
command line options (these options are discussed later). This indicates the compiler is
properly installed and working.

After installing the compiler, you can modify your operating environment to access the compiler
executable files from anywhere. To do this, you will need to add the path to the compiler to your

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 46 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

PATH environment variable or add a link to it from a standard binary directory (such as /opt/bin).
This is optional and not required for any of the run—time sample programs to work. They are all
set up to use relative directory paths to access the compiler and libraries.

Deployment run—time packages should be installed by repeating steps 1 through 3 above. The
packages should be unpacked in the same base root directory as the original SDK files. This will
cause /ib_opt subdirectories to be added to the various C and C++ directories in the installation.

Testing the C or C++ Run-time Components

The basic C or C++ run—time libraries for UNIX are typically built with the GNU gcc/g++ compiler
and/or the standard native compiler provided by the manufacturer of a particular type of UNIX
(for example, aCC for HP-UX). Two symbolic links are used within the ¢ or cpp subdirectory to
select the version of the runtime libraries to be used. They are as follows:

® b
® platform.mk

By default, these are set to point at the GNU gcc/g++ version of the run—time libraries for a
particular platform. This is easily changed by deleting the links and setting them to point at
another run—time library. For example, on Solaris, to use the native compiler libraries one would
set lib => libCC and platform.mk —> platform.CC:

In .s libCC lib
In .s platform.CC platform.mk

You can verify operation of any of the different run—time kits by executing the sample programs.
These can be found in the different sample directories (sample_ber, sample_der, sample_per
and/or sample_xer depending on what run—time kits were installed).

To test the encode/decode capabilities for any of the encoding rules, execute the sample
programs as described in the section on Windows installation.

Backwards Compatibility

ASN1C underwent significant changes between version 5.8x and 6.0x, including some that
affect code generation. These changes are also present in version 6.1. Additionally, 6.1
includes more modifications that will affect Java and C# handling of enumeration types,
especially.

These changes represent an APl change for all languages. For C and C++, two files have been
packaged with the kit to help in porting code generated with prior versions: rtport.pl and
asnlcompat.h. The former will process a specified file and rename the types contained in it. The
latter contains macro definitions that convert old names to the new naming scheme.

Changes for Java and C# will be mostly transparent to the user, except that enumerated values
are now retrieved through the use of accessor methods. These changes are discussed in detail
in the Java and C#

User's Guides.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 47 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-2. COMMAND-LINE ASN1C &/ &

(Getting Started with the ASN1C C / C++ command line.)

Getting Started with the ASN1C C / C++ Command Line

This tutorial will help users use the ASN1C complier using the terminal shell prompt. Please note that tutorial
assumes you are operating in a Linux system.

Change directory to one of the employee sample directories.

cd c/sample_ber/employee

Change the PATH variable by typing:

PATH=$HOME/asn1c-v60x/bin:$PATH
export PATH

Note: This assumes ASN1C was installed into the login root directory. Also, x is to be replaced by a minor
version number.

Run ASN1C to compile the files.

To compile the included employee example, type the following on the command line:
For C:

asnlc employee.asn -c -ber
For C++:

asnlc employee.asn -c++ -ber
Run the C / C++ compiler.

Note: This tutorial shows how to use the GNU gcc/g++ compiler, but the procedure for other compilers would

be similar.

At a minimum, the -c and - options are necessary to compile the employee.c (or employee.cpp) file. -l is used
to specify include directories. For BER, the rtsrc and rtbersrc directories would need to be included, therefore,
the command line argument would be:

For C:

gcc -c -1 $(HOME)/asnlc-v60x/rtsrc -1 $(HOME)/asnlc-v60x/rtbersrc employee.c

For C++:

g++ -c -1 $(HOME)/asnlc-v60x/rtsrc -1 $(HOME)/asnlc-v60x/rtbersrc employee.cpp

The same command would be required to compile the reader.c and writer.c programs.

Link the compiled code with the runtime libraries.

For C:

gcc -0 writer writer.o employee.o -L$(HOME)/asn1c-v60x/c/lib -lasnlber -lasnlrt

gcc -o reader reader.o employee.o -L$(HOME)/asnlc-v60x/c/lib -lasnlber -lasnlrt

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 48 of 100

http://www.obj-sys.com/tutor-cmdccpp.shtml�

NL Telecom co., Ltd

For C++:

Obijective System

g++ -0 writer writer.o -L$(HOME)/asn1c-v60x/cpp/lib -lasnlber -lasnlrt

g++ -0 reader reader.o -L$(HOME)/asnlc-v60x/cpp/lib -lasnlber -lasnlrt

ASN1C ASN.1 Compiler Training

Note: A makefile and a Visual Studio project file (Microsoft Windows only) contain all of these commands.

These files come with the ASN1C compiler.

2-3 ASN1C Compiler Option

ASN1C Compiler, Version

6.2.%

Copyright (c) 1997-2009 Objective Systems, Inc. All Rights Reserved.

Usage: asnic <filename> <options>

<filename>

language options:
-C
—Cctt
—c#

-java
-xsd [<filename>]

encoding rule options:
—ber
-cer
—der
-per
-xer
=xm|

basic options:
—asnstd <std>

—compact
—compat <version>

-config <file>

ASN. 1 or XSD source filename(s).

may be

generate
generate
generate
generate
generate

generate
generate
generate
generate
generate
generate

specified. =* and ? wildcar

C code

C++ code

C# code

Java code

XML schema definitions

BER encode/decode functions
CER encode/decode functions
DER encode/decode functions
PER encode/decode functions
XER encode/decode functions
XML encode/decode functions

Multiple filenames
ds are al lowed.

set standard to be used for parsing ASN.1
source file. Possible values — x208, x680, mixed

(default
generate

is x680)
compact code

generate code compatible with previous
compiler version. <version> format is

x.x (for

example, 5.3)

specify configuration file

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 49 of 100

NL Telecom co., Ltd

—depends

—-| <directory>
—-lax
—-laxsyntax
—-list
—-noContaining
—-nodecode
—noencode
—-nolndeflLen
—-noObjectTypes
—noOpenExt
-notypes
—noxmlns

-0 <directory>
—-pdu <type>

—-usepdu <type>

—-print [<filename>]

-prtfmt details | bracetext

—-shor tnames
—trace
-[noJUniqueNames

-warnings
-nodatestamp

C/C++ options:
-hfile [<filename>]

—-cfile [<filename>]

—-genBi tMacros
—-genfFree
—hdrGuardPfx
-max|ines <num>

-nolnit

—-oh <directory>
-static

—cppNs <namespace>

Obijective System ASN1C ASN.1 Compiler Training

compile main file and dependent IMPORT items

set import file directory

do not generate constraint checks in code

do not do a thorough ASN.1 syntax check

generate listing

do generate inline type for CONTAINING <type>

do generate decode functions

do generate encode functions

do generate indefinite length tests

do gen types for items embedded in info objects

do generate open extension elements

do generate type definitions

do generate XML namespaces for ASN.1 modules

set output file directory

designate <type> to be a Protocol Data Unit (PDU)

(<type> may be * to select all type definitions)

specify a Protocol Data Unit (POU) type for which

sample reader/writer programs and test code has to

be generated

generate print functions

format of output generated by print

reduce the length of compiler generated names

add trace diag msgs to generated code

resolve name clashes by generating unique names
default=on, use —noUniqueNames to disable

output compiler warning messages

do not put date/time stamp in generated files

not
not
not
not
not
not
not
not

C or G+t header (.h) filename
(default is <ASN.1 Module Name>.h)
C or C++ source (.c or .cpp) filename
(default is <ASN.1 Module Name>.c)
generate named bit set, clear, test macros
generate memory free functions for all types
add prefix to header guard #defines in .h files
set limit of number of lines per source file
(default value is 50000)
do not generate initialization functions
set output directory for header files
generate static elements (not pointers)
add a C++ namespace to generated code (C++ only)

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 50 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

C/C++ makefile/project options:
—-genMake [<filename>] generate makefile to build generated code
-veproj [<version>] generate VC++ 6.0 project files for use with <version> (Windows

only)
—dl | generate makefile/project to use DLL's
-mt generate makefile/project to use multithreaded |ibs
-w32 generate code for Windows 0/S (default=GNU)

Java options:

—compare generate comparison functions
-dirs output Java code to module name dirs
—genbui Id generate build script
—-genant generate ant build.xml script
—genjsources generate <modulename>.mk for list of java files
—-getset generate get/set methods and protected member vars
—-pkgname <text> Java package name
—-pkgpfx <text> Java package prefix
—-javad generate code for Java 1.4

C# options:
-nspfx <text> C# namespace prefix
—-namespace <text> C# namespace name
-dirs output C# code to module name dirs
—gencssour ces generate <modulename>.mk for list of C# files
—genMake generate makefile to build generated code

pro options:
-3app generate special code for 3GPP specifications
—-events generate code to invoke SAX-like event handlers
—-stream generate stream-based encode/decode functions
—-tables generate table constraint functions
-strict do strict checking of table constraint conformance

—-param <name>=<value> create types from param types using given value
—prtToStr [<filename>]

generate print-to-string functions (C/C+t)
-prtToStrm [<filename>]

generate print-to-stream functions (C/C+t)
-genTest [<filename>]

generate sample test functions
—-domTest [<filename>]

generate test functions that use XML DOM

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 51 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

—-reader generate sample reader program
-writer generate sample writer program
-compare [<filename>]
generate comparison functions (C/Ct+t)
-copy [<filename>] generate copy functions (C/Ct++)
-maxcfiles generate separate file for each function (C/C+t)

XSD options:
-appinfo [<items>] generate applinfo for ASN.1 items
<items> can be tags, enum, and/or ext
ex: —appinfo tags,enum,ext
default = all if <items> not given
-attrs [<items>] generate non-native attributes for <items>
<jitems> is same as for —appinfo
-targetns [<namespace>] Specify target namespace
<namespace> is namespace URI, if not given
no target namespace declaration is added
—-useAsni1Xsd reference types in asnil.xsd schema

Symbian options:
-symbian [<items>] generate code for Symbian 0S
<jtems> can be dl|
e.g. —symbian dl|
default = symbian application style code

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 52 of 100

NL Telecom co., Ltd

2-2-1. nmake clean

Obijective System ASN1C ASN.1 Compiler Training

C:\acv580\cpp\sample_ber\employee>nmake clean

Microsoft (R) Program Maintenance Utility

Version 6.00.8168.0

Copyright (C) Microsoft Corp 1988-1998. All rights reserved.

del Employee*.cpp

del Employee.h
del *.obj

del *.exe

del *.exp

del *.pdb

del *.map

del *.lib

del *~

del writer.exe
del reader.exe
del rtkey.h

C:\acv580\cpp\sample_ber\employee>dir

2005-11-09 2.3 05:03
2005-11-09 2.3 05:03
2006-04-18 2.3~ 04:19
2006-04-18 2.3 04:19
2005-11-09 2.3 05:03
2006-04-18 2.3 04:17
2005-11-18 2.3 01:40
2005-11-09 2.3 05:03
2005-11-09 2.3 05:03
2006-04-18 2.3~ 04:14
2006-04-18 2.3 04:14
2006-04-18 2.3~ 04:13
2005-11-09 2.3 05:03
2005-11-09 2.3 05:03
2006-04-18 2.3 04:14
2006-04-18 2.3 04:14
2006-04-18 2.3 04:14

<DIR>
<DIR>

<DIR>
<DIR>

545 employee.asn
880 employee.dsw
50,176 employee.ncb
62,976 employee.opt
1,310 nakefile
136 message.dat
161 messagei.dat
2,815 eader.cpp
5,728 eader.dsp
9,539 eader.plg
ReaderDebug
ReaderRelease
3,846 writer.cpp
5,623 writer.dsp
246 writer.plg
WriterDebug
WriterRelease

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 53 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-2-1. nmake
C:\acv580\cpp\sample_ber\employee>nmake

Microsoft (R) Program Maintenance Utility ~ Version 6.00.8168.0
Copyright (C) Microsoft Corp 1988-1998. All rights reserved.

.\.\.\\bin\\asn1c employee.asn -c++ -ber -trace -print -geninit

ASN1C Compiler, Version 5.80
Copyright (c) 1997-2005 Objective Systems, Inc. All Rights Reserved.

License expire date is Sat May 20 21:26:27 2006
Parsing ASN.1 definitions..

Writing C++ class definitions to file Employee.h..

Writing C++ common definitions/functions to file Employee.cpp..
Writing C++ encode functions to file EmployeeEnc.cpp..

Writing C++ decode functions to file EmployeeDec.cpp..

Writing C++ common definitions/functions to file Employee.cpp..
Writing C++ print functions to file EmployeePrint.cpp..

cl -D_TRACE -0Ob2 -Gy -Ox -G6 -D_OPTIMIZED -DWIN32 -D_WIN32 -
DMSDOS -GF -ML -nologo -GX -W3 -c-I. -l../../src
-1../.1.Irtsrc -1../..] . Irtbersrc -1../../. .Irtpersrc -1../..[..Irtxersrc -1../..[.. writer.cpp
writer.cpp

cl -D_TRACE -0Ob2 -Gy -Ox -G6 -D_OPTIMIZED -DWIN32 -D_WIN32 -
DMSDOS -GF -ML -nologo -GX -W3 -c-I.-l../../src
-1/ Irtsrc -1../..] . Irtbersrc -1../../..Irtpersrc -1../../..Irtxersrc -1../../.. Employee.cpp
Employee.cpp

cl-D_TRACE -Ob2 -Gy -Ox -G6 -D_OPTIMIZED -DWIN32 -D_WIN32 -
DMSDOS -GF -ML -nologo -GX -W3 - -I. -l../../src
-1../..1.Irtsrc -1../../ . .Irtbersrc -1../../..Irtpersrc -1../..[..Irtxersrc -1../../.. EmployeeEnc.cpp
EmployeeEnc.cpp

cl -D_TRACE -0Ob2 -Gy -Ox -G6 -D_OPTIMIZED -DWIN32 -D_WIN32 -
DMSDOS -GF -ML -nologo -GX -W3 -c -l. -l../../src
-1../.[. Irtsre -1../../. . Irtbersrc -1../../..Irtpersrc -1../../../Irtxersrc -1../..[.. EmployeeDec.cpp
EmployeeDec.cpp

cl writer.obj Employee.obj EmployeeEnc.obj EmployeeDec.obj /nologo /link
/OUT:writer.exe /OPT:REF -LIBPATH:../.
Jlib asnlber_a.lib asnirt_a.lib user32.lib ws2_32.lib advapi32.lib

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 54 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

cl -D_TRACE -0Ob2 -Gy -Ox -G6 -D_OPTIMIZED -DWIN32 -D_WIN32 -
DMSDOS -GF -ML -nologo -GX -W3 -c-I. -l../../src
-1../..1.Irtsrc -1../..] . Irtbersrc -1../..[. .Irtpersrc -1../../..Irtxersrc -l1../..[.. reader.cpp
reader.cpp

cl -D_TRACE -0Ob2 -Gy -Ox -G6 -D_OPTIMIZED -DWIN32 -D_WIN32 -
DMSDOS -GF -ML -nologo -GX -W3 -c-I.-l../../src
-1/ Irtsre -1,/] . Irtbersrc -1../../..Irtpersrc -1../..[..Irtxersrc -1../../.. EmployeePrint.cpp
EmployeePrint.cpp

cl reader.obj Employee.obj EmployeeEnc.obj EmployeeDec.obj
EmployeePrint.obj /nologo /link /OUT :reader.exe /OPT
‘REF -LIBPATH:../../lib asnlber_a.lib asnlrt_a.lib user32.lib ws2_32.lib advapi32.lib

C:\acv580\cpp\sa[npIe_ber\emponee>dir

2006-04-19 2%~ 10:02 <DIR>

2006-04-19 <% 10:02 <DIR> .

2005-11-09 <% 05:03 545 employee.asn
2006-04-19 <% 10:02 10,170 Employee.cpp
2005-11-09 <% 05:03 880 employee.dsw
2006-04-19 2% 10:02 6,985 HEnployee.h
2006-04-18 <% 04:19 50,176 employee.ncb
2006-04-19 2% 10:02 15,605 Enployee.obj
2006-04-18 <. 04:19 62,976 enployee.opt
2006-04-19 <% 10:02 12,831 EmployeeDec.cpp
2006-04-19 <% 10:02 9,511 HmployeeDec.obj
2006-04-19 <% 10:02 7,011 EnployeeEnc.cpp
2006-04-19 <% 10:02 6,338 HEnployeeEnc.obj
2006-04-19 <% 10:02 4,839 HEnployeePrint.cpp
2006-04-19 <% 10:02 6,118 HEmployeePrint.obj
2005-11-09 2% 05:03 1,310 nakefile
2006-04-18 <% 04:17 136 message.dat
2005-11-18 <% 01:40 161 messagei.dat
2005-11-09 <% 05:03 2,815 eader.cpp
2005-11-09 2% 05:03 5,728 eader.dsp
2006-04-19 2% 10:02 139,264 eader.exe
2006-04-19 2% 10:02 14,973 eader.obj
2006-04-18 2% 04:14 9,539 eader.plg
2006-04-18 2. 04:14 <DIR> ReaderDebug
2006-04-18 2% 04:13 <DIR> ReaderRelease
2006-04-19 2% 10:02 853 tkey.h
2005-11-09 <% 05:03 3,846 writer.cpp
2005-11-09 2% 05:03 5,623 writer.dsp

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 55 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2006-04-19 2.5 10:02 131,072 writer.exe

2006-04-19 2.5 10:02 17,309 writer.obj

2006-04-18 2% 04:14 246 writer.plg

2006-04-18 2% 04:14 <DIR> WriterDebug

2006-04-18 2.5 04:14 <DIR> WriterRelease

2006-04-19 2.5 09:38 1,789 W H X FE Ink
287 9} 528,649 H}o|E

67} Tl€lElg] 10,303,574,016 Hlo|E &

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 56 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Visual Studio Projects

(Using the existing Visual Studio project files.)

ASN1C comes complete with several samples, each of which includes a Visual Studio project file compatible
with Visual Studio 6.0. (These project files may be imported into newer versions of Visual Studio.) ASN1C
versions 6.0 and above also include options to generate project files.

This tutorial describes creating a project file for the Employee sample program found in
ASN1C_INSTALL_DIR\cpp\sample_ber\employee. On typical Windows installations, ASN1C_INSTALL_DIR is
c:\acv[version], where [version] corresponds to the three digit version number, such as 585.

Please note: projects imported into Visual Studio .NET 2005 may compile with several warnings because of
deprecated functions. Newer versions of ASN1C generate code that will not cause these warnings.

Following are instructions for using the enclosed project files.

1.

Before working with the project, the source code for it must be generated, either using the command-
line tool or the graphical user interface. Click here for instructions for using the GUI.

Open Microsoft Visual C++.
From the File menu, choose Open Workspace.
Open the file employee.dsw.

reader and writer classes classes should be visible in the project workspace. If you are unable to see
the Project workspace, click on the View menu, and select the Workspace option.

From the workspace window, right click on the writer class and select Set As Active Project.
Select Build writer.exe from the Build menu. This action will compile the writer executable.

From the Build menu, select the Execute writer.exe option. An MS-DOS prompt window will open, and
you will see the contents of the execution. Close this window by pressing any key.

Repeat this process for the reader project.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 57 of 100

http://www.obj-sys.com/employeeproj.shtml�
http://www.obj-sys.com/tutor-gui.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Creating a Project

(Creatinq a new Visual Studio project in a sample directory.)

This tutorial will help guide you to complete a Microsoft Visual C++ 6.0 project. The results will enable to build
and run the files generated by the ASN1C compiler.

Note: Before you begin to create a project, it is necessary to have first generated the .c / .cpp and .h using
the ASN1C GUI or command line.

Open Microsoft Visual C++ .

From the File menu, select select the New option.

A new window will appear on your screen enabling you to create a new workspace, project, or document.

Select the Project tab from the top of the new window.

Select Win 32 Console Application from the list and proceed with project creation wizard.

Enter VSproj for the Project name, and Click the OK button. From the next window, ensure you Create a Blank
Project is selected and click Finish.

Once you click the Finish button in the wizard, you will return to the original Visual C++ window.

Once you return to the main window, add the appropriate files to the project.

To add files to a project, select the Project option from the menu. From the pop-up menu, select Add to
Project followed by selecting Files from the next pop-up menu. At this point a new window will appear. From
this window, select the .c, .cpp, and .h files generated by the ASN1C compiler. For example, select
employee.c and employee.h which have been compiled by the ASN1C compiler. When you have selected all of
these files, click on the OK button.

NOTE: It is necessary to add both the .c or .cpp file AND the .h file.

From the Project menu, select the Settings option.

This will open a new window allowing you to alter the setting of the current project.

Select the Link tab from the top of the Project Settings window.

Add asnlrt.lib and and one of the following libraries to the Object/library modules text area. Once
complete, select OK.

e asnlBER.lib (if BER or DER encoding rules were selected)
e asnlPER.lib (if PER encoding rules were selected)

e asnlXER.lib (if XER encoding rules were selected)

From the Tools menu, select Options.

This will open a new window allowing you to modify the options of your project.

Inside the Directories tab, ensure you are viewing the directories of the Include files

Add C:\ACV58x\RTSRC and one of the following directories to the list of directories:

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 58 of 100

http://www.obj-sys.com/VSproj.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

e C:\ACV58X\RTBERSRC (if BER or DER encoding rules were selected)
e C:\ACV58X\RTPERSRC (if PER encoding rules were selected)

e C:\ACV58X\RTXERSRC (if XER encoding rules were selected)
and the directory of the the library files.

Add C:\ACV58x\c\lib if your sample applicationisain C
or C:\ACV58x\cpp\lib if your sample application is a in C++.

NOTE: x is the version number of your ASN1C compiler.
You can now Build and Compile the code.

e Select Build form the Build menu option.

e Select Compile from the Build menu option.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 59 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-3. GUI WIZARD ASN1C & &
(Gettinq Started with the ASN1C Graphical User Interface (GUI) Wizard.)

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 1

Double-click on the ASN1C complier icon.

A window will open welcoming you to the ASN1C compiler wizard.

% ASH1C compiler - Objective Systems Inc

objective "
EYSTEMS, INC. Ibf;w

ASN1C Project Wizard

B Create a new project ASNIC 6.1.2
EF!' Qpen an exisking Evaluation license:
project

License expire date is Sun Dec 21 01:00:01 2008

= Back Mext = Zancel Help

Click on the next button located at the bottom of the window.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 60 of 100

http://www.obj-sys.com/tutor-gui.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 2

In the ASN.1 Files grouping, click on the Add button.

A new window will appear allowing you to select the ASN.1 file you want to translate.

% 'ASN1C compiler - Objective Systems Inc

objective .
SYSTEMS, ING 5o
Tk .

ASN1C compiler command

Chacvel 2bintasnic Chacvel 2csample_beriemplovestemployves, asn -asnskd x680 -c -ber -genmake
-W32

Compile ! Save

A3M1C Compiler, Mersion 6,1,2
Copyright {2 1997-2008 Objective Systems, Inc, Al Rights Reserved,

License expire date is Sun Dec 21 01:00:01 2008
Parsing A43M.1 definitions. ,

Wtiking C kype definitions to file Employes.h..

Wriking C common definitionsfunctions ko file Employees.c.,
Writing © encode funckions to file EmployesEnc.c..

Writing C decode Functions to File EmploveeDec.c..

wtiking C global wariables ko file Employee. ..,

Generating makefile., .

< Back Mexk = Finished Help

To open the Employee example, click on employee.asn file, and press the Open button.

If you installed the ASN1C compiler to the default location, the employee.asn file is located in
C:\acv61x\c\sample_ber\employee directory. Once you select the Open button, the file open window will close
and you will return to the ASN1C wizard. C:\acv61x\c\sample_ber\employee\employee.asn is now visible in the
ASN.1 Files text window.

Select the Next button located at the bottom of the window.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 61 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

It is not necessary to add any directories or files to the Include Directories or Configuration Files sections
before clicking on the Next button. If you want to include this information for the ASN1C compiler, follow the
same process listed above for the ASN.1 Files.

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 3

By default, the 1997/2002 ASN.1 Standard category is chosen. It is not necessary to change this to
continue with the ASN1C wizard.

Choose an application language from the center of the next page.

“ _ASN1C compiler - Objective Systems Inc
MW objective
BYSTEMS, INC

Code Generation Options

— Input File Type
{* Modern ASM.1 {1997+ based on %.680 standard)

" Legacy A5M.1 (based on obsolete ¥, 205 standard with ROSE or SMMP macros)

{~ #ML Schema (X500

— Application Language Type
i C = C++ o = Java = Mone (syntax check anly)

— Additional Translations

[T Generate equivalent XML schema (X300 file

[T Generate &5k, 1 file based on ¥ 694 (250 input only)

[T Gererate code For all dependent imported type definitions

< Back Mexk = Cancel Help

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 62 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 4

Choose Encoding Rules.

Choose from BER, DER,CER, PER, XER or XML by clicking in the option box. Select options for Function Types

and Space Optimizations.

“ ASN1C compiler - Objective Systems Inc
objective
SYSTEMS, INGC.

C/C++ Code Generation Options

—Seleck Encoding Rules

¥ EER ™ CER [T cEr ™ PER* [~ =ER [~ umL

* zelect aligned or unaligned PER at run-time

—Select Function Types to be Generated

¥ Encode I Copy [~ Prink ko:

% stdout § skring & stream

¥ Decode [T Compare
¥ Iritialization [T Test
[T Memary Free [T stream [T Mamed Bit Macros

—apace Optimization Options
[T Do not generate indefinite length processing code (-nolndefLen)
[T Do not generate code bo savejrestore unknown extensions (-noQpenExk)
[T Do not generate code to check constrainks (-lax)

[T &enerate compact code {-compack)

— Compatability Options

[~ &enerate code compatible with compiler version | w5, 5 ;I

< Back Mext = Zancel | Help |

These pages have only optional commands for the ASN1C compiler. It is not necessary to select any of these

options for the most basic parsing of your ASN.1 file.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 63 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 5

Select desired options for code generation.

* ASN1C compiler - Objective Systems Inc

objective

SYSTEMS, INC.

C/C++ Code Generation Options

—Generated CfC++ Tvpe Modifiers

[T Generate skatic member variables in choice construcks (-static)
[T Generate shart Farm of bype names (-shortnarmes)

[T Use Fully-qualified enums

¥ autornatically create unigue narmes for duplicate items

[T Treat all bypes as Pratocol Data Units (PDU's) (-pdu *)

— Tahle Constraint Opkions

[T Generate code bo Fully encode/decode items with table constraints (-tables)

[T Enable strict constraint checks on all table constraint ikerns (-strict)

—Event Handler Options

[T Generate code bo invoke event handler callback funckions (-events)

[T Generate pure parser (fevent handler callbacks with no bypes) (-notypes)

—Cukput File Options

= Oukput code to .c).h files based on module names Mazx lines per file: I

= ©utput each generated Funckion to a separate source file (-mazxcfiles)

= Output all code ko a single .of b file ¢ h I

< Back Mext = | Cancel | Help

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 64 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 6

Choose desired options for C, C++, code generation.

% ASN1C compiler - Objective Systems Inc

SYSTEMS. INC. b&,‘ﬁm :

C/C++ Code Generation Options

—Makefile Options

¥ Generate Makefiles
’75 YWindows (nmake) G

[T Generate Visual Skudio Project File

—Library Opkions
{* Generate static libraries [T Generate mulki-threaded libraries

{~ Generate shared libraries

—5ample Program Generation Options

[T Generate writer sample progran (-wriker)

[T Generate reader sample pragram (-reader)

—Ckher Cptions

Enter aother command-line options not awvailable in GUT:

< Back | Mexk = Cancel Help

Click on next button to move to the compile screen.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 65 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Using the ASN1C Graphical User Interface (GUI) Wizard - Page 7

When you reach the Complier Command Window, select the compile button.

Note the contents of the text block below the compile button. If the file compiles without error, the ASN1C
compiler will display a message stating compilation was successful. If errors were encountered, the text block

will display them.

% ASN1C compiler - Objective Systems Inc

objective s
SYSTEMS, INGC i&,.:‘.ﬁ-
ik

ASN1C compiler command

Chacvel Zibintasnic Chacvel 2ctsample_beriemplovestemploves, asn -asnstd x680 -c -ber -genmake
-W32

Save

A3M1C Compiler, Mersion 61,2
Copyright (o) 1997-2003 Objective Swstems, Inc, All Rights Reserved,

License expire date is Sun Dec 21 01:00:01 2008
Parsing &3MN.1 definitions.

Writing C bvpe definitions to File Emplovee.h..

Wtiking C common definitions functions ko file Employee.c.,
Wriking C encode Funckions ko file EmplovesEnc.c..

Writing © decode funckions to file EmployesDec.c.,

Writing C global wariables to File Emplovee. c..

Generating makefile. .

< Back Mexk = Finished Help

Select the Finish button to close the ASN1C wizard when you are complete.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 66 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ASN1C compiler wizard help

NOTE: The documentation related to Asnlc compiler & runtime library can be found at

http://www.0obj-sys.com/docs/documents.shtml

ASN1C compiler input

Code generation options

Additional code generation options

Options related to C/C++ code generation

Options related to C# code generation

Options related to Java code generation

Options related to Xml Schema code generation

ASN1C compiler output

ASN1C compiler input

Add ASN.1 files

The Add ASN.1 File button allows Abstract Syntax Notation One (ASN.1) source files to be added to the project.
These source files contain the ASN.1 productions that define ASN.1 type and/or value specifications to be compiled.
To add a file, press the Add button next to the ASN.1 file window pane and select the file from the directory view
window. Multiple source files can be added by clicking the button multiple times. Files can be removed by

highlighting file names in the panel and clicking Remove

Add Include Directories

This item is optional. It is used to specify directories that the compiler will search for ASN.1 source files for IMPORT
items. Directory paths are specified in the same way as ASN.1 files above using the Add and Remove buttons next to

the panel.

Add Configurations Files

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 67 of 100

http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

This item is optional. It is used to specify the name of a file containing configuration information for the source file(s)
being parsed. Configuration files can have a .cfg or .xml extension. A full discussion of the contents of a configuration
file is provided in the ASN1C C/C++ or Java or C# manual. Configuration files are specified in the same way as

ASN.1 files above using the Add and Remove buttons next to the panel.

Code generation options
Choose ASN.1 standard category

The 1997 / 2002 ASN.1 syntax is the default. If the ASN.1 source file is based on the 1990 ASN.1 standard (x.208),
the 1990 ASN.1 syntax compiler should be used. The 1990 version can also parse embedded ROSE and SNMP macro

definitions.

Choose Encoding/Decoding Rules

Select one of the following options (note: this is a required field):

BER This option instructs the compiler to generate functions that implement the Basic
Encoding Rules (BER) as specified in the ASN.1 X.690 standard.

DER This option instructs the compiler to generate functions that implement the
Distinguished Encoding Rules (DER) as specified in the ASN.1 X.690 standard.

CER This option instructs the compiler to generate functions that implement the
Canonical Encoding Rules (CER) as specified in the ASN.1 X.690 standard.

PER This option instructs the compiler to generate functions that implement the Packed
Encoding Rules (PER) as specified in the ASN.1 X.691 standard.

XER This option instructs the compiler to generate functions that implement the XML
Encoding Rules (XER) as specified in the ASN.1 X.693 standard.

XML This option instructs the compiler to generate functions that implement the XML
Encoding Rules (XML) as specified in the World-Wide Consortium (W3C). Related

Xml Schema can be generated with Asnlc compiler -xsd option.

Choose Application Language

Select one of the following options (note: this is a required field):

C Generate C source code.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 68 of 100

http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

C++ Generate C++ source code.
C# Generated C# source code.
Java Generate Java source code.
Xml Schema Generate Xml Schema source code.

Note: selection of an item in each of the previous two fields is required to enable the Next button to move on to

the next window.

Additional compiler options

All entries on this page are optional. Only select the additional code generation features you want to enable. All are off
by default. Some of the following options will not be displayed for XML Schmea code generation. Addition code

generation options are divided in following subsections:

Code Reduction Options

Generate compact code

This option instructs the compiler to generate more compact code at the expense of some constraint and error
checking. This is an optimization option that should be used after an application is thoroughly tested. Note: this option

is not available for Xml Schema code generation.

Do not generate encode functions

This option suppresses the generation of encode functions. By default, the compiler will generate both encode and

decode functions. Note: this option is not available for Xml Schema code generation.

Do not generate decode functions

This option suppresses the generation of decode functions. By default, the compiler will generate both encode and

decode functions. Note: this option is not available for Xml Schema code generation.

Do not generate indefinite length tests

This option instructs the compiler to omit indefinite length tests in generated decode functions. These tests result in the

generation of a large amount of code. If you know that your application only uses definite length encoding, this option

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 69 of 100

http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�
http://www.obj-sys.com/docs/documents.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

can result in a much smaller code base size. (Note: this option applies only to BER/DER code generation and has no

meaning for other encoding rules).

Do not generate open extension elements

This option instructs the compiler to not add an open extension element(extEleml1) in constructs that contain
extensibility markers. The purpose of the element is to collect any unknown items in a message. If an application does

not care about these unknown items, it can use this option to reduce the size of the generated code.

Do not generate code to check constraints

This option is used to tell the compiler to not generate the code to handle the Asnl constraints. Type with constraint

will be processed as type without constraints.

Options to Generate Additional Code

Generate named bit macro

This option instructs the compiler to generate macros to set, clear, or test the named bit in a bit string structure. These
macros offer better performance then using the run-time functions because all calculations of mask and index values

are done at compiler time. The drawback is they can result in a large amount of additional generated code.

Generate free routines

This option works only for C code generation.

This option instructs the compiler to generate a memory free function for each ASN.1 production.
Normally, memory is freed within ASN1C by using the rtMemFree run-time function to free all
memory at once that is held by a context. Generated free functions allow finer grained control over
memory freeing by just allowing the memory held for specific objects to be freed.

Generate print routines

This option indicates print functions should be generated. Print functions are debug functions that
allow the contents of generated type variables to be written to stdout. This option is optional: if not
selected, print functions are not generated.

e C/C++ print functions are written to a file named "<module>Print.c” (or .cpp) where <module> is the name of
the ASN.1 module.

e Java print method is generated in each of the generated Java source files.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 70 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

e C# print method is generated in each of the generated C# source files.

Add trace diagnostic messages to generated code

This option is used to tell the compiler to add trace diagnostic messages to the generated code. These messages cause
printf statements to be added to the generated code to print entry and exit information into the generated functions.
This is a debugging option that allows encode/decode problems to be isolated to a given production processing
function. Once the code is debugged, this option should not be used as it adversely affects performance. Note: this

option is not available for Xml Schema code generation.

Options to Alter Generated Code

Generate strict constraints check

This option is used to tell the compiler to generate the code to handle the Asnl constraints, which are not required
practiaclly. This option will increase the size of the generated code & reduces the generated code performance. The

affected constraint is Table Constraint value fields.

Generate static elements

This option has the same effect as specifying the global static configuration item. The compiler will insert static

elements instead of pointer variables in generated structures.

Generate code compatible with older compiler version

This option instructs the compiler to generate code compatible with an older version of the compiler. The compiler will
attempt to generate code more closely aligned with the given previous release of the compiler. is specified as x.x (for

example, -compat 5.2)

Pro Version Options

Generate test routines
This option avaliable only for C and C++ code generation.
This option allows the specification of a C or C++ source (.c or .cpp) file to which

generated “ test” functions will be written. “ Test” functions are used to populate
an instance of a generated PDU type variable with random test data. This instance

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 71 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

can then be used in an encode function call to test the encoder. Another advantage
of these functions is that they can act as templates for writing your own population
functions. The <filename> argument to this option is optional. If not specified, the
functions will be written to <modulename>Test.c where <modulename> is the name
of the module from the ASN.1 source file.

Generate separate file for each function

This option avaliable only for C and C++ code generation.

This option instructs the compiler to generate a separate .c file for each generated
C function. In the case of C++, a separate .cpp file is generated for each control
class, type, C function. This is a space optimization option — it can lead to smaller
executable sizes by allowing the linker to only link in the required program module
object files.

Generate print to stream routines

This option avaliable only for C and C++ code generation.

This option allows the specification of a C or C++ source (.c or .cpp) file to which generated
“print-to-stream” functions will be written. “Print-to-stream” functions are similar to print
functions except that the output is written to a user-provided stream instead of stdout. The stream
is in the form of an output callback function that can be set within the run-time context making it
possible to redirect output to any type of device. The <filename> argument to this option is
optional. If not specified, the functions will be written to <modulename>Print.c where
<modulename> is the name of the module from the ASN.1 source file.

Generate print to text buffer routines

This option avaliable only for C and C++ code generation.

This option indicates print functions should be generated. These are the same as print functions
except the output is redirected to a user given text buffer instead of stdout. This makes it possible
to display the information on a different output device (such as a Window). C/C++ print functions
are written to a file named "<module>Print.c" (or .cpp) where <module> is the name of the ASN.1
module. This option is optional: if not selected, these functions are not generated.

Generate copy routines

This option avaliable only for C and C++ code generation.

This option indicates copy functions should be generated. These are functions that

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 72 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

allow one populated data variable to be copied to another. A deep copy of all
dynamic data is done using the ASN1C memory management function. This item is
optional: if not selected, these functions are not generated.

Generate comparison routines

This option avaliable only for C and C++ code generation.

This option indicates comparison functions should be generated. Comparison functions are debug
functions that allow the contents of generated type variables to be compared with other variables of
the same type. C/C++ comparison functions are written to a file named "<module>Print.c"

(or .cpp) where <module> is the name of the ASN.1 module. This option is optional: if not
selected, comparison functions are not generated.

Generate makefile for project
This option avaliable only for C and C++ code generation.
This option instructs the compiler to generate a portable makefile for compiling the

generated C or C++ code. The window or unix format are required to be selected.
By default compiler will generate unix format makefile.

Generate BER stream-based encode/decode functions

This option avaliable only for BER encoding rule.

This option instructs the compiler to generate stream-based encoders/decoders instead of memory
buffer based. This makes it possible to encode directly to or decode directly from a source or sink
such as a file or socket. In the case of BER, it will also cause forward encoders to be generated
which will use indefinite lengths for all constructed elements in a message.

Generate code to handle table constraints

This option indicates table constraint processing structures and functions should be generated. These add logic for
handling types that use message tables for defining what is to be included in a give protocol interaction message. The
added logic makes it possible to encode or decode these multi-part messages in a single step. Note: this option is not

available for Xml Schema or XER rule.

Generate event handlers

Generate extra code to invoke user defined event and error handler callback methods (see the
Event Handlers section of the ASN1C C/C++ or Java or C# Manual). Note: this option is not

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 73 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

available for C and Xml Schema code generation or XER and XML encoding rule.

Generate event handlers with no type definitions (SAX parser)

This options generates event handlers and suppresses the generation of type
definitions. It is pure parser functions. Note: this option is not available for C and Xml
Schema code generation or XER and XML encoding rule.

Other Options

Output compiler warning messages

Output information on compiler generated warnings.

Generate listing

This will dump the source code to the standard output device as it is parsed. This can be useful for finding parse errors.

Output directory name

This option displays the name of a directory to which all of the generated files will be written. The default directory to
which the generated source files will be written will be displayed in the box when the window is displayed. The output
directory name can be changed to write the files to a different location. The directory name can either be typed in

directly or the "..." button on right of field will allow the directory to be selected via a directory tree-view window.

C/C++ Code Generation Options

All of the following options are related to C or C++ code generation only. They are disabled if Java or C# or Xml

Schema code generation is selected.

Following options can be used to change the generated source code filenames.
Change source file name

This option allows the specification of a C or C++ source (.c or .cpp) file to which all of the
generated encode/decode functions will be written. The default name is <modulename>.c where
<modulename> is the name of the module from the ASN.1 source file.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 74 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Note: This option is disabled, if " Generate seperate file for each function" is selected on previous
page.

Change header file name

This option allows the specification of a header (.h) file to which all of the generated typedefs and
function prototypes will be written. The default name is <modulename>.h where <modulename>is
the name of the module from the ASN.1 source file.

Note: This option is disabled, if " Generate seperate file for each function" is selected on previous
page.

Change print routine file name

This option is available when “Generate print routines” option is selected. This allows an alternate
source file name to be specified to which the generated print routines will be written. If not
specified, the print functions will be written to <modulename>Print.c (or .cpp) where
<modulename> is the name of the module from the ASN.1 source file.

Note: This option is disabled, if " Generate seperate file for each function” is selected on previous
page.

Change print to buffer routine file name

This option is available when "Generate print to text buffer routines™ option is selected. This
allows an alternate source file name to be specified to which the generated print to buffer routines
will be written. If not specified, the print functions will be written to <modulename>PrtToStr.c
(or .cpp) where <modulename> is the name of the module from the ASN.1 source file.

Note: This option is disabled, if " Generate seperate file for each function" is selected on previous
page.

Change print to stream routine file name

This option is available when "Generate print to stream routines™ option is selected. This allows an
alternate source file name to be specified to which the generated print to stream routines will be
written. If not specified, the print functions will be written to <modulename>PrtToStrm.c (or .cpp)
where <modulename> is the name of the module from the ASN.1 source file.

Note: This option is disabled, if " Generate seperate file for each function” is selected on previous
page.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 75 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Change comparision routine file name

This option is available when "Generate comparison routines” option is selected. This allows an
alternate source file name to be specified to which the generated comparison routines will be
written. If not specified, the print functions will be written to <modulename>Compare.c (or .cpp)
where <modulename> is the name of the module from the ASN.1 source file.

Note: This option is disabled, if " Generate seperate file for each function" is selected on previous
page.

Change copy routine file name

This option is available when one or more of the "Generate copy routines™ option is selected. This
allows an alternate source file name to be specified to which the generated copy routines will be
written. If not specified, the print functions will be written to <modulename>Copy.c (or .cpp)
where <modulename> is the name of the module from the ASN.1 source file.

Note: This option is disabled, if " Generate seperate file for each function” is selected on previous
page.

C# Code Generation Options

All of the following options are related to C# code generation only. They are disabled if C or C++ or Java or Xml

Schema code generation is selected.

Generate code in module name directory

This option indicates each module code will be generated in respective module name directory. Compiler will create a
directory for module name if directory is not exist. Created directory name will be module name by replacing _ for -
(i.e. ACSE-1 code will be generated in ACSE_1 directory)

Generate short names for production

This option indicates the change in the name generated by compiler for embedded type in
constructive type. This option is required to handle the limit on the size of the filename. With this
option, generated code filenames would be shorter than without this option.

Without this option compiler will generates embedded type with a name:
<TypeName>_<ElementName>_... <LastElementName>

With this option compiler will generates embedded type with a name:
<TypeName>_<LaseElementName>_%d (number would be added for duplicate names)

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 76 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

C# NameSpace Prefix

This is a C# option for adding a prefix in front of the assigned C# namespace name. By default, the C# namespace
name is set to the module name. If the namespace is embedded within a hierarchy, this option can be used to set the
other directory names that must be added to allow C# to find the .cs files. This option cannot be used in conjunction

with the C# NameSpace Name option.

C# NameSpace Name

This is a C# option that allows the entire C# namespacee name to be changed. Instead of the module name, the full
name specified using this option will be used. This option cannot be used in conjunction with the C# NameSpace

Prefix option

Java Code Generation Options

All of the following options are related to Java code generation only. They are disabled if C or C++ or C# or Xml

Schema code generation is selected.

Generate code in module name directory

This option indicates each module code will be generated in respective module name directory. Compiler will create a
directory for module name if directory is not exist. Created directory name will be module name by replacing _ for -
(i.e. ACSE-1 code will be generated in ACSE_1 directory)

Generate short names for production

This option indicates the change in the name generated by compiler for embedded type in
constructive type. This option is required to handle the limit on the size of the filename. With this
option, generated code filenames would be shorter than without this option.

Without this option compiler will generates embedded type with a name:
<TypeName>_<ElementName>_... <LastElementName>

With this option compiler will generates embedded type with a name:
<TypeName>_<LaseElementName>_%d (number would be added for duplicate names)

Java Package Prefix

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 77 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

This is a Java option for adding a prefix in front of the assigned Java package name. By default, the Java package
name is set to the module name. If the package is embedded within a hierarchy, this option can be used to set the other
directory names that must be added to allow Java to find the .class files. This option cannot be used in conjunction

with the Java Package Name option.

Java Package Name

This is a Java option that allows the entire Java package name to be changed. Instead of the module name, the full
name specified using this option will be used. This option cannot be used in conjunction with the Java Package Prefix

option

Xml Schema Code Generation Options

All of the following options are related to Xml Schema code generation only. They are disabled if C or C++ or C# or

Java code generation is selected.

Generate annotation for ASN.1 Tags

This option instructs the compiler to generate annotation (appinfo) for ASN.1 tag definition. In general, these tags have
no meaning in an XSD representation of an ASN.1 type that is used to create or validate XML markup. However, if
the schema definition is to be used to generate a BER or DER instance of a type, the tag information will be required.

This option is optional: if not selected, tag information annotation are not generated.

Generate XER compatible Xml Schema

This option instructs the compiler to generate XER compatible Xml Schema, Which can be used with schema
validators to validate the XER encoded message. This option is optional: if not selected, Xml Schema would be

generated as per mapping rule found in c/c++ user manual.

Change target namespace

This option instructs the compiler to generate code with a user supplied target name space. If not specified, the
compiler will use "http://www.obj-sys.com™ as a target namespace for generated module. This same target name space

will be used for imported module namespace.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 78 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Do not generate appinfo comments

This option instructs the compiler to not generate appinfo codes for enumerated, named integer & named bit types. If
not specified, the compiler will generate appinfo code as specified in XmISchema code generation topic in user

manual.

ASN1C Compiler Output

This is the last page of the wizard. This page displays the ASN1C command-line command that was generated for the
selected set of options. The compile button can now be pressed to execute the command. It is also possible to capture
the command on the clipboard for future use in a makefile or script by selecting the command and pressing the "Ctrl-

C" (control C) key on the keyboard.

Objective Systems Inc

http://www.obj—sys.com

Phone: (484) 875-9842

If you have any questions or concerns, Please email us at support@obj-sys.com

Copyright © 1997-2004 Objective Systems, Inc. All Rights Reserved.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 79 of 100

http://www.obj-sys.com/�
mailto:support@obj-sys.com�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Generated Encode/Decode Function and Methods

Generated Makefile

Generated VC++ Project Files

Generated Makefile

The -genmake option causes a portable makefile to be generated to assist in the C or C++
compilation of all of the generated C or C++ source files. This makefile contains a rule to
invoke ASN1C to regenerate the .c and .h files if any of the dependent ASN.1 source files
are modified. It also contains rules to compile all of the C or C++ source files. Header file
dependencies are generated for all the C or C++ source files.

Two basic types of makefiles are generated:

1. A GNU compatible makefile. This makefile is compatible with the GNU make utility
which is suitable for compiling code on Linux and many UNIX operating systems, and

2. A Microsoft Visual Studio compatible makefile. This makefile is compatible with the
Microsoft Visual Studio nmake utility.

A GNU compatible makefile is produced by default, the Microsoft compatible file is
produced when the -w32 command line option is specified in addition to -genmake.

Both of these makefile types rely on definitions in the platform.mk make include file. This
file contains parameters specific to different compiler and linker utilities available on
different platforms. Typically, all the needs to be done to port to a different platform is to
adjust the parameters in this file.

When a makefile is generated, it is assumed that the ASN1C project exists within the
ASN1C installation directory tree. The generation logic tries to determine the root
directory of the installation by traversing upward from the project directory in an attempt
to locate the rtsrc subdirectory which is assumed to be the installation root directory. The
makefile variable OSROOTDIR is then set to this value. A similar traversal is done to locate
the platform.mk and xmlparser.mk files. These paths are then set in the makefile. If the
project directory is located outside of the ASN1C directory tree, the user must set

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 80 of 100

http://www.obj-sys.com/docs/acv62/CCppHTML/ch03s06s01.html�
http://www.obj-sys.com/docs/acv62/CCppHTML/ch03s06s02.html�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

the OSROOTDIR environment variable to point at the ASN1C root directory in order for the
makefile generation to be successful. If this is done, it is assumed that the platform.mk
and xmlparser.mk files are located in this directory as well. If the compiler is unable to
determine the root directory using any of the methods described above, an error will be
generated and the user will need to manually edit the makefile to set the required root
directory parameters and makefile include file paths.

Generated VC++ Project Files

The -vcproj option causes Microsoft Visual Studio project and workspace files to be
generated that can be used to build the generated code. The files are compatible with
Visual Studio version 6.0; but higher versions of Visula Studio can convert these files to the
newer formats. This option can be used with the -dlIl option that will generate project files
to compile all generated code into a DLL and -mt that will add multi-threaded compilation
options to generated projects.

Because there are several different versions of Visual Studio, the -vcproj option takes an
optional argument: the release year of the version of Visual Studio used. This modifies the
resulting project to link against the appropriate set of libraries distributed with ASN1C. If
no year is specified, the project will link against the usual ¢ and cpp directories. If 2003 is
specified, the project will us the ¢_vs2003 and cpp_vs2003 directories. If 2005 is
specified, ¢c_vs2005 and cpp_vs2005 will be used. Likewise, if 2008 is specified, ¢_vs2008
and cpp_vs2008 will be used.

Encode/Decode Function Prototypes

If BER or DER encoding is specified, a BER encode and decode function prototype is
generated for each production (DER uses the same form - there are only minor differences
between the two types of generated functions). These prototypes are of the following
general form:

int asn1E_<ProdName> (OSCTXT* pctxt,
<ProdName>* pvalue, ASN1TagType tagging):

int asn1D_<ProdName> (OSCTXT* pctxt,
<ProdName>* pvalue, ASN1TagType tagging, int length);

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 81 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

The prototype with the asnlE_ prefix is for encoding and the one with asnlD_is for
decoding. The first parameter is a context variable used for reentrancy. This allows the
encoder/decoder to keep track of what it is doing between function invocations.

The second parameter is for passing the actual data variable to be encoded or decoded.
This is a pointer to a variable of the generated type.

The third parameter specifies whether implicit or explicit tagging should be used. In
practically all cases, users of the generated function should set this parameter

to ASN1EXPL (explicit). This tells the encoder to include an explicit tag around the
encoded result. The only time this would not be used is when the encoder or decoder is
making internal calls to handle implicit tagging of elements.

The final parameter (decode case only) is length. This is ignored when tagging is set

to ASN1EXPL (explicit), so users can ignore it for the most part and set it to zero. In the
implicit case, this specifies the number of octets to be extracted from the byte stream.
This is necessary because implicit indicates no tag/length pair precedes the data;
therefore it is up to the user to indicate how many bytes of data are present.

If PER encoding is specified, the format of the generated prototypes is different. The PER
prototypes are of the following general form:

int asn1PE_<ProdName> (OSCTXT* pctxt, <ProdName>[*] value);

int asniPD_<ProdName> (OSCTXT* pctxt, <ProdName>* pvalue):

In these prototypes, the prefixes are different (a ‘P’ character is added to indicate they
are PER encoders/decoders), and the tagging argument variables are omitted. In the
encode case, the value of the production to be encoded may be passed by value if it is a
simple type (for example, BOOLEAN or INTEGER). Structured values will still be passed
using a pointer argument.

If XER encoding is specified, function prototypes are generated with the following format:

int asniXE_<ProdName> (OSCTXT* pctxt, <ProdName>[*] value,
const char* elemName,
const char* attributes);

int asniXD_<ProdName> (OSCTXT* pctxt, <ProdName>* pvalue);

The encode function signature includes arguments for the context and value as in the other
cases. It also has an element name argument (elemName) that contains the name of the

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 82 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

element to be encoded and an attributes argument (attributes) that can be used to encode
an attributes string. The decode function is generated for PDU-types only - decoding of
internally referenced types is accomplished through generated SAX handler callback
functions which are invoked by an XML parser.

If XML functions are generated using the -xml switch, the function prototypes are as
follows:

int XmlEnc_<ProdName> (OSCTXT* pctxt, <ProdName> value,
const OSUTFBCHAR* elemName, const OSUTF8CHAR* nsPrefix);

int XmlDec_<ProdName> (OSCTXT* pctxt, <ProdName>* pvalue):

In this case, the encode function contains an argument for XML element name (elemName)
and also namespace prefix (nsPrefix).

General Procedures for Encoding and Decoding

Dynamic Memory Management

Populating Generated Structure Variables for Encoding

Accessing Encoded Message Components

Encoding functions and methods generated by the ASN1C compiler are designed to be
similar in use across the different encoding rule types. In other words, if you have written
an application to use the Basic Encoding Rules (BER) and then later decide to use the
Packed Encoding Rules (PER), it should only be a simple matter of changing a few function
calls to accomplish the change. Procedures for such things as populating data for encoding,
accessing decoded data, and dynamic memory management are the same for all of the
different encoding rules.

This section describes common procedures for encoding or decoding data that are
applicable to any of the different encoding rules. Subsequent sections will then describe
what will change for the different rules.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 83 of 100

http://www.obj-sys.com/docs/acv62/CCppHTML/ch06s04s01.html�
http://www.obj-sys.com/docs/acv62/CCppHTML/ch06s04s02.html�
http://www.obj-sys.com/docs/acv62/CCppHTML/ch06s04s03.html�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Dynamic Memory Management

The ASN1C run-time uses specialized dynamic memory functions to improve the
performance of the encoder/decoder. It is imperative to understand how these functions
work in order to avoid memory problems in compiled applications. ASN1C also provides the
capability to plug-in a different memory management scheme at two different levels: the
high level API called by the generated code and the low level API that provides the core

memory managment functionality.
The ASN1C Default Memory Manager

The default ASN1C run-time memory manager uses an algorithm called the nibble-
allocation algorithm. Large blocks of memory are allocated up front and then split up to
provide memory for smaller allocation requests. This reduces the number of calls required
to the C malloc and free functions. These functions are very expensive in terms of
performance.

The large blocks of memory are tracked through the ASN.1 context block (OSCTXT)
structure. For C, this means that an initialized context block is required for all memory
allocations and deallocations. All allocations are done using this block as an argument to
routines such as rtxMemAlloc. All memory can be released at once when a user is done
with a structure containing dynamic memory items by calling rtxMemFree. Other functions
are available for doing other dynamic memory operations as well. See the C/C++ Run-time
Reference Manual for details on these.

High Level Memory Management API

The high-level memory management API consists of C macros and functions called in
gemerated code and/or in application programs to allocate and free memory within the
ASN1C run-time.

At the top level are a set of macro definitions that begin with the prefix rtxMem. These
are mapped to a set of similar functions that begin with the prefix rtxMemHeap. A table
showing this basic mapping is as follows:

Macro Function Description

r txMemAl loc r txMemHeapAl loc Allocate memory

rtxMemAllocZ | rtxMemHeapAllocZ | Allocate and zero memory

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 84 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

Macro Function Description
rtxMemReal loc | rtxMemHeapReal loc | Reallocate memory
rtxMemFree r txMemHeapFreeAl | | Free all memory in context

rtxMemFreePtr | rtxMemHeapFreePtr | Free a specific memory block

See the ASN1C C/C++ Common Runtime Reference Manual for further details on these

functions and macros.

It is possible to replace the high-level memory allocation functions with functions that
implement a custom memory management scheme. This is done by implementing some (or
all) of the C rtxMemHeap functions defined in the following interface (note: a default

implementation is shown that replaces the ASN1C memory manager with direct calls to the

standard C run-time memory management functions):

#include <stdlib.h>
#include "rtxMemory.h"

int rtxMemHeapCreate (void** ppvMemHeap) {
return 0;

voidx rtxMemHeapAlloc (void** ppvMemHeap, int nbytes) {
return malloc (nbytes):

voidx rtxMemHeapAllocZ (void** ppvMemHeap, int nbytes) {
void* ptr = malloc (nbytes);
if (0 !=ptr) memset (ptr, 0, nbytes);
return ptr;

void rtxMemHeapFreePtr (void** ppvMemHeap, void* mem_p) {
free (mem_p);

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 85 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

void* rtxMemHeapRealloc (void** ppvMemHeap, void* mem_p, int nbytes_) {
return realloc (mem_p, nbytes_):

void rtxMemHeapFreeAll (void** ppvMemHeap) {

void rtxMemHeapRelease (void** ppvMemHeap) {

}

In most cases it is only necessary to implement the following

functions: rtxMemHeapAlloc, rtxMemHeapAllocZ, rtxMemHeapFreePtr

and rtxMemHeapRealloc. Note that there is no analog in standard memory management for
ASN1C’s rtxMemFree macro (i.e. the rtxMemHeapFreeAll function). A user would be
responsible for freeing all items in a generated ASN1C structure individually if standard
memory management is used.

The rtxMemHeapCreate and rtxMemHeapRelease functions are specialized functions used
when a special heap is to be used for allocation (for example, a static block within an
embedded system). In this case, rtxMemHeapCreate must set the ppvMemHeap argument
to point at the block of memory to be used. This will then be passed in to all of the other
memory management functions for their use through the OSCTXT structure.

The rtxMemHeapRelease function can then be used to dispose of this memory when it is no
longer needed.

To add these definitions to an application program, compile the C source file (it can have
any name) and link the resulting object file (.OBJ or .0) in with the application.

Built-in Compact Memory Management

A built-in version of the simple memory management API described above (i.e with direct
calls to malloc, free, etc.) is available for users who have the source code version of the
run-time. The only difference in this APl with what is described above is that tracking of
allocated memory is done through the context. This makes it possible to provide an
implementation of the rtxMemHeapFreeAll function as described above. This memory

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 86 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

management scheme is slower than the default manager (i.e. nibble-based), but has a
smaller code footprint.

This form of memory management is enabled by defining the _MEMCOMPACT C compile
time setting. This can be done by either adding -D_MEMCOMPACT to the C compiler
command-line arguments, or by uncommenting this item at the beginning of

the rtxMemory.h header file:

Low Level Memory Management API

It is possible to replace the core memory management functions used by the ASN1C run-
time memory manager. This has the advantage of preserving the existing management
scheme but with the use of different core functions. Using different core functions may be
necessary on some systems that do not have the standard C run-time functions malloc, free,
and realloc, or when extra functionality is desired.

To replace the core functions, the following run-time library function would be used:

void rtxMemSetAl locFuncs (OSMal locFunc malloc_func,
0SReal locFunc real loc_func, OSFreeFunc free_func);

The malloc, realloc, and free functions must have the same prototype as the standard C
functions. Some systems do not have a realloc-like function. In this case, realloc_func may
be set to NULL. This will cause the malloc_func/free_func pair to be used to do
reallocations.

This function must be called before the context initialization function (rtinitContext)
because context initialization requires low level memory management facilities be in place
in order to do its work.

Note that this function makes use of static global memory to hold the function definitions.
This type of memory is not available in all run-time environments (most notably Symbian).
In this case, an alternative function is provided for setting the memory functions. This
function is rtxInitContextExt which must be called in place of the standard context

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 87 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

initialization function (rtinitContext). In this case, there is a bit more work required to
initialize a context because the ASN.1 subcontext must be manually initialized. This is an
example of the code required to do this:

int stat = rtxInitContextExt (pctxt, malloc_func, realloc_func, free_func);:
if (0==stat) {

rtErrASNTInit ();

stat = rtCtxtInitASNiInfo (pctxt);
}

Memory management can also be tuned by setting the default memory heap block size.
The way memory management works is that a large block of memory is allocated up front
on the first memory management call. This block is then subdivided on subsequent calls
until the memory is used up. A new block is then started. The default value is 4K (4096)
bytes. The value can be set lower for space constrained systems and higher to improve
performance in systems that have sufficient memory resources. To set the block size, the
following run-time function should be used:

void rtxMemSetDefBIkSize (OSUINT32 blkSize);

This function must be called prior to context initialization.
C++ Memory Management

In the case of C++, the ownership of memory is handled by the control class and message
buffer objects. These classes share a context structure and use reference counting to
manage the allocation and release of the context block. When a message buffer object is
created, a context block structure is created as well. When this object is then passed into
a control class constructor, its reference count is incremented. Then when either the
control class object or message buffer object are deleted or go out of scope, the count is
decremented. When the count goes to zero (i.e. when both the message buffer object and
control class object go away) the context structure is released.

What this means to the user is that a control class or message buffer object must be kept
in scope when using a data structure associated with that class. A common mistake is to
try and pass a data variable out of a method and use it after the control and message
buffer objects go out of scope. For example, consider the following code fragment:

ASNIT_<type>* func? () {

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 88 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

ASN1T_<type>* p = new ASN1T_<type> ();
ASN1BERDecodeBuf fer decbuf:
ASN1C_<type> cc (decbuf, *p);

cc.Decode();

return p:

}

void funci () {
ASN1T_<type>* pType = func2 ();

}

As can be seen from this example, once func?2 exits, all memory that was allocated by the
decode function will be released. Therefore, any items that require dynamic memory
within the data variable will be in an undefined state.

An exception to this rule occurs when the type of the message being decoded is a Protocol
Data Unit (PDU). These are the main message types in a specification. The ASN1C compiler
designates types that are not referenced by any other types as PDU types. This behavior
can be overridden by using the -pdu command line argument or <isPDU> configuration file
element.

The significance of PDU types is that generated classes for these types are derived from
the ASN1TPDU base class. This class holds a reference to a context object. The context
object is set by Decode and copy methods. Thus, even if control class and message buffer
objects go out of scope, the memory will not be freed until the destructor of an ASN1TPDU
inherited class is called. The example above will work correctly without any modifications
in this case.

Another way to keep data is to make a copy of the decoded object before it goes out of
scope. A method called newCopy is also generated in the control class for these types
which can be used to create a copy of the decoded object. This copy of the object will

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 89 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

persist after the control class and message buffer objects are deleted. The returned object
can be deleted using the standard C++ delete operator when it is no longer needed.

Returning to the example above, it can be made to work if the type being decoded is a
PDU type by doing the following:
ASNIT_<type>* func? () {
ASN1T_<type> msgdata;

ASN1BERDecodeBuf fer decbuf;
ASN1C_<type> cc (decbuf, msgdata);

cc.Decode();

return cc.newCopy();

Populating Generated Structure Variables for Encoding

Prior to calling a compiler generated encode function, a variable of the type generated by
the compiler must be populated. This is normally a straightforward procedure - just plug in
the values to be encoded into the defined fields. However, things get more complicated
when more complex, constructed structures are involved. These structures frequently
contain pointer types which means memory management issues must be dealt with.

There are three alternatives for managing memory for these types:

1. Allocate the variables on the stack and plug the address of the variables into the
pointer fields,

2. Use the standard malloc and free C functions or new and delete C++ operators to
allocate memory to hold the data, and

3. Use the rxtMemAlloc and rtxMemFree run-time library functions or their associated
macros.

Allocating the variables on the stack is an easy way to get temporary memory and have it
released when it is no longer being used. But one has to be careful when using additional
functions to populate these types of variables. A common mistake is the storage of the

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 90 of 100

NL Telecom co., Ltd

addresses of automatic variables in

Obijective System ASN1C ASN.1 Compiler Training

the pointer fields of a passed-in structure. An example

of this error is as follows (assume A, B, and C are other structured types):

typedef struct {
Ax a;
Bx b;
C* c;

} Parent;

void fillParent (Parent* parent)

{

A aa;
B bb;
C cc;

parent—>a = &aa;
parent—>b = &bb;
parent->c = &cc;

main ()
{
Parent parent;

fillParent (&parent);:

encodeParent (&parent);

}

In this example, the automatic var

iables aa, bb, and cc go out of scope when the fillParent

function exits. Yet the parent structure is still holding pointers to the now out of scope

variables (this type of error is commonly known as “dangling pointers™).

Using the second technique (i.e., using C malloc and free) can solve this problem. In this

case, the memory for each of the elements can be safely freed after the encode function is

called. But the downside is that a free call must be made for each corresponding malloc

NLT-PD-ASN1-004

Version 1.4 DRAFT Page : 91 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

call. For complex structures, remembering to do this can be difficult thus leading to
problems with memory leaks.

The third technique uses the compiler run-time library memory management functions to
allocate and free the memory. The main advantage of this technique as opposed to using
C malloc and free is that all allocated memory can be freed with a single rtxMemFree call.
The rtxMemAlloc macro can be used to allocate memory in much the same way as the C
malloc function with the only difference being that a pointer to an initialized OSCTXT
structure is passed in addition to the number of bytes to allocate. All allocated memory is
tracked within the context structure so that when the rtxMemFree function is called, all
memory is released at once.

Accessing Encoded Message Components

After a message has been encoded, the user must obtain the start address and length of
the message in order to do further operations with it. Before a message can be encoded,
the user must describe the buffer the message is to be encoded into by specifying a
message buffer start address and size. There are three different types of message buffers
that can be described:

1. static: this is a fixed-size byte array into which the message is encoded

2. dynamic: in this case, the encoder manages the allocation of memory to hold the
encoded message

3. stream: in this case, the encoder writes the encoded data directly to an output
stream

The static buffer case is generally the better performing case because no dynamic memory
allocations are required. However, the user must know in advance the amount of memory
that will be required to hold an encoded message. There is no fixed formula to determine
this number. ASN.1 encoding involves the possible additions of tags and lengths and other
decorations to the provided data that will increase the size beyond the initial size of the
populated data structures. The way to find out is either by trial-and-error (an error will be
signaled if the provided buffer is not large enough) or by using a very large buffer in
comparison to the size of the data.

In the dynamic case, the buffer description passed into the encoder is a null buffer pointer
and zero size. This tells the encoder that it is to allocate memory for the message. It does

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 92 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

this by allocating an initial amount of memory and when this is used up, it expands the
buffer by reallocating. This can be an expensive operation in terms of performance -
especially if a large number of reallocations are required. For this reason, run-time helper
functions are provided that allow the user to control the size increment of buffer
expansions. See the C/C++ Run-Time Library Reference Manual for a description of these

functions.

In either case, after a message is encoded, it is necessary to get the start address and
length of the message. Even in the static buffer case, the message start address may be
different then the buffer start address (see the section on encoding BER messages). For
this reason, each set of encoding rules has a run-time C function for getting the message
start address and length. See the C/C++ Run-Time Library Reference Manual for a
description of these functions. The C++ message buffer classes contain

the getMsgPtr, getMsgCopy , and getMsgLength methods for this purpose.

A stream message buffer can be used for BER encoding. This type of buffer is used when
the -stream option was used to generate the encode functions. See the section on BER
stream encoding for a complete description on how to set up an output stream to receive
encoded data.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 93 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-4. Sample BER Build & C/H&

For example, we will assume that you installed ASN1C for C/C++. To test the BER C++
encode/decode capabilities, do the following:

1. Change directory (cd) to the .\cpp\sample_ber\employee subdirectory. Execute the nmake
command to build the writer and reader sample programs. nmake is utility program that
comes with Visual C++. It may also be necessary to execute a Microsoft batch file named
VCVARS32.BAT to set the path information so that the nmake utility can be found.
(Important note: this assumes you are using Microsoft Visual C++ on your PC. Some PC
specific include and library directories in the makefile may need to be changed to get the
samples to work on your system. See the README.txt file for further details).

2. Execute the writer.exe program to encode the sample record. The results of the encoding
will be dumped to the screen and saved in a file called message.dat.

3. Execute the reader.exe program to read and decode the contents of the message.dat file.
This program will read the encoded record into memory, decode it, and then print the contents
of the generated structure variable to standard output.

2—-4-1. Sample PER Build & CIH&

1. Change directory (cd) to the .\sample_per\employee subdirectory. Execute the nmake
command to build the writer and reader sample programs.

2. Execute the writer.exe program to encode the sample record. The —a switch can be used to
encode a record using aligned PER. The —u switch encodes a record using unaligned PER.
The results of the encoding will be dumped to the screen and saved in a file called
message.dat.

3. Execute the reader.exe program to read and decode the contents of the message.dat file.
The —a or —u switch must be the same as that specified when the writer program was executed.
This program will read the encoded record into memory, decode it, and then print the contents
of the generated structure variable to standard output. This test can be repeated for XER as
well by going to the sample_xer\employee subdirectory and repeating the above sequence of
steps.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 94 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-4-2. Ct2 Platforms 0l Run—-time Code EE

2 E platform A HE2 AZENIFI AXE RE CHE2|Q platform.mk Ol UASLILCH

=
CtE platform 0l Run—time code € Z&ol= 282 Otei 2t 2SLICH

1. Create a directory tree containing a root directory (the name does not matter) and lib, src, rt*src, and
build_lib subdirectories (note: in these definitions, * is a wildcard character indicating there are multiple

directories matching this pattern). The tree should be as follows:

root

lib risre sre build lib

ribersre

2. Copy the files ending in extension ".mk" from the root directory of the installation to the root directory of
the target platform (note: if transferring from DOS to UNIX or vice-versa, FTP the files in ASCII mode to

ensure lines are terminated properly).

3. Copy all files from the src and the different rt*src subdirectories from the installation to the src and rt*src
directories on the target platform (note: if transferring from DOS to UNIX or vice-versa, FTP the files in

ASCII mode to ensure lines are terminated properly).
4. Copy the makefile from the build_lib subdirectory of the installation to the build_lib subdirectory on the
target platform (note: if transferring from DOS to UNIX or vice-versa, FTP the files in ASCIlI mode to

ensure lines are terminated properly).

5. Edit the platform.mk file in the root subdirectory and modify the compilation parameters to fit those of the

compiler of the target system. In general, the following parameters will need to be adjusted:

a. CC C compiler executable name

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 95 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

b. CCC C++ compiler executable name

c. CFLAGS _ Flags that should be specified on the C or C++ command line

The platform.w32 and platform.gnu files in the root directory of the installation are sample files for
Windows 32 (Visual C++) and GNU compilers respectively. Either of these can be renamed to platform.mk

for building in either of these environments.

6. Invoke the makefile in the build_lib subdirectory.

wE shepuel 2go] Fasihd, lib ArcgEee] uleluel ghelrele} wEold 3 gyt

Library Files Description

asnlirt_a.lib

asnilber_a.lib Static single—threaded libraries. These are built without —MT
asnlper_a.lib (multithreading) and =MD (dynamic link libraries) options.
asnlixer_a.lib These are not thread—safe. However, they provide the
asnixml_a.lib smallest footprint of the different libraries.

asnlrt.lib

asniber.lib

asnliper.lib DLL libraries. These are used to link against the DLL versions
asnixer.lib of the run—time libraries (asn/rt.dll, etc.)

asnixmi.lib

asnlirtmt_a.lib

asnibermt_a.lib | Static multi—-threaded libraries. These libraries were built with
asnipermt_a.lib |the —MT option. They should be used if your application
asnixermt_a.lib | contains threads and you wish to link with the static libraries
asnixmimt_a.lib | (note: the DLLs are also thread—safe).

asnlirtmad_a.lib

asnibermad_a.lib
asnliperma_a.lib
asnixermad_a.lib
asnixmima_a.lib

DLL-ready multi—-threaded libraries. These libraries were built
with the =MD option. They allow linking additional object
modules in with the ASN1C

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 96 of 100

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

2-5. REFERENCE

Changing form ASN.1: 1998 to ASN.1:2002
http://www.itu.int/1TU-T/studyaroups/comil7/changing-ASN/

ASN.1 Module Database
http://www.itu.int/ITU-T/asn1/database/index.html

Search the ITU Web site
http://www.itu.int/search/index.html

Objective System Inc ASN1C/CPP Products
http://www.obj—sys.com/

Objective System Inc Download ASN1C Evaluations Copy
http://www.obj-sys.com/downloads.shtml

Objective System Inc AS1C Documentation
http://www.obj—sys.com/support.php)

CURRENT DOCUMENTATION FAQ

ASN1C Version 6.5 Release Notes Manuals Change Log

PREVIOUS RELEASES

ASN1C Version 6.4 Release Notes Manuals Change Log
ASN1C Version 6.3 Release Notes Manuals Change Log
ASN1C Version 6.2 Release Notes Manuals Change Log
ASN1C Version 6.1 Release Notes Manuals Change Log
ASN1C Version 6.0 Release Notes Manuals Change Log
ASN1C Version 5.8 Release Notes Manuals Change Log

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 97 of 100

http://www.itu.int/ITU-T/studygroups/com17/changing-ASN/�
http://www.itu.int/ITU-T/asn1/database/index.html�
http://www.itu.int/search/index.html�
http://www.obj-sys.com/�
http://www.obj-sys.com/downloads.shtml�
http://www.obj-sys.com/support.php�
http://www.obj-sys.com/asn1-faq.shtml�
http://www.obj-sys.com/release-notes-asn1c-v65.html�
http://www.obj-sys.com/asn1c-manuals.shtml#asn16.5�
http://www.obj-sys.com/change-log-asn1-6.5.shtml�
http://www.obj-sys.com/release-notes-asn1c-v64.html�
http://www.obj-sys.com/asn1c-manuals.shtml#asn16.4�
http://www.obj-sys.com/change-log-asn1-6.4.shtml�
http://www.obj-sys.com/release-notes-asn1c-v63.html�
http://www.obj-sys.com/asn1c-manuals.shtml#asn16.3�
http://www.obj-sys.com/change-log-asn1-6.3.shtml�
http://www.obj-sys.com/release-notes-asn1c-v62.html�
http://www.obj-sys.com/asn1c-manuals.shtml#asn16.2�
http://www.obj-sys.com/change-log-asn1-6.2.shtml�
http://www.obj-sys.com/release-notes-asn1c-v61.html�
http://www.obj-sys.com/asn1c-manuals.shtml#asn16.1�
http://www.obj-sys.com/change-log-asn1-6.1.shtml�
http://www.obj-sys.com/release-notes-asn1-6.0.shtml�
http://www.obj-sys.com/asn1c-manuals.shtml#asn16.0�
http://www.obj-sys.com/change-log-asn1-6.0.shtml�
http://www.obj-sys.com/release-notes-asn1-5.8.shtml�
http://www.obj-sys.com/asn1c-manuals.shtml#asn15.8�
http://www.obj-sys.com/change-log-asn1-5.8.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

TUTORIALS

Tutorial providing an introduction to the basic concepts of ASN.1

Getting Started with the ASN1C Graphical User Interface (GUI) Wizard.

Getting Started with the ASN1C Java command line.

Getting Started with the ASN1C C / C++ command line.

Using the existing Visual Studio project files.

WHITEPAPERS

ASN1C C/C++ Code Generation for 3GPP and LTE

ASN1C Mapping of ASN.1 Syntax to XML Schema

ASN1C Support for Information Objects and Parameterized Types

SAX-like Event Handlers for the Generic Parsing of ASN.1 Encoded Data

= ASN1VE

CURRENT DOCUMENTATION

ASN1VE Version 2.2 Release Notes Manuals Change Log

PREVIOUS RELEASES

ASN1VE Version 2.1 Release Notes Manuals Change Log
ASN1VE Version 2.0 Release Notes Manuals Change Log
ASN1VE Version 1.7 Release Notes Manuals Change Log

=
= ASN2XML

CURRENT DOCUMENTATION

ASN2XML Version 2.2 Release Notes Manuals Change Log

PREVIOUS RELEASES

ASN2XML Version 2.1 Release Notes Manuals Change Log

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 98 of 100

http://www.obj-sys.com/asn1tutorial/asn1only.html�
http://www.obj-sys.com/docs/acv64/GUIHELP/asn1cgui_onlinehelp1.php�
http://www.obj-sys.com/tutor-cmdjava.shtml�
http://www.obj-sys.com/tutor-cmdccpp.shtml�
http://www.obj-sys.com/employeeproj.shtml�
http://www.obj-sys.com/docs/ASN1C%20LTE%20Code%20Generation.pdf�
http://www.obj-sys.com/docs/ASN1toXMLSchemaWhitePaper.pdf�
http://www.obj-sys.com/docs/ASN1CInfoObjectsWhitePaper.pdf�
http://www.obj-sys.com/docs/ASN1CEventHandlersWhitePaper.pdf�
http://www.obj-sys.com/asn1ve/v22x/README.html�
http://www.obj-sys.com/asn1ve/v22x/help/index.html�
http://www.obj-sys.com/change-log-asn1ve.shtml�
http://www.obj-sys.com/asn1ve/v21x/README.html�
http://www.obj-sys.com/asn1ve/v21x/help/index.html�
http://www.obj-sys.com/change-log-asn1ve.shtml�
http://www.obj-sys.com/asn1ve/v20x/README.html�
http://www.obj-sys.com/asn1ve/v20x/help/index.html�
http://www.obj-sys.com/change-log-asn1ve.shtml�
http://www.obj-sys.com/asn1ve/README.html�
http://www.obj-sys.com/asn1ve/doc/ASN1VE-Manual.html�
http://www.obj-sys.com/change-log-asn1ve-v1xx.shtml�
http://www.obj-sys.com/asn2xml/v22x/README.html�
http://www.obj-sys.com/asn2xml/v22x/asn2xml.pdf�
http://www.obj-sys.com/change-log-asn2xml.shtml�
http://www.obj-sys.com/asn2xml/v21x/README.html�
http://www.obj-sys.com/asn2xml/v21x/asn2xml.pdf�
http://www.obj-sys.com/change-log-asn2xml.shtml�

NL Telecom co., Ltd

=
= ASN2CSV

CURRENT DOCUMENTATION

ASN2CSV Version 2.1

Gk
= CSTADLL

CURRENT DOCUMENTATION
CSTADLL Version 1.2
CSTADLL Version 1.1

CSTADLL Version 1.0

3
XBinder

CURRENT DOCUMENTATION

XBinder Version 2.2

PREVIOUS RELEASES
XBinder Version 2.1
XBinder Version 2.0
XBinder Version 1.5

XBinder Version 1.4

TUTORIALS

Introduction to XBinder.

RELATED INFORMATION

Obijective System ASN1C ASN.1 Compiler Training

Release Notes

Release Notes

Release Notes

Release Notes

Release Notes

Release Notes

Release Notes

Release Notes

Release Notes

PDF | HTML | Change Log

PDF | HTML & Change Log

PDF | HTML | Change Log

PDF | HTML & Change Log

Manuals Change Log
Manuals Change Log
Manuals Change Log
Manuals Change Log
Manuals Change Log

[CONFORMANCE TESTS] W3C XML Schema Patterns for Databinding Test Results

[COMPARISONS] Comparing XBinder to Non-XBinder Code

NLT-PD-ASN1-004

Version 1.4 DRAFT

Page : 99 of 100

http://www.obj-sys.com/docs/asn2csv/v21x/README.html�
http://www.obj-sys.com/docs/asn2csv/v21x/asn2csv.pdf�
http://www.obj-sys.com/docs/asn2csv/v21x/HTML�
http://www.obj-sys.com/change-log-asn2csv.shtml�
http://www.obj-sys.com/docs/cstadll/v12x/README.html�
http://www.obj-sys.com/docs/cstadll/v12x/CSTADLLv12xRef.pdf�
http://www.obj-sys.com/docs/cstadll/v12x/HTML�
http://www.obj-sys.com/change-log-cstadll-v12x.shtml�
http://www.obj-sys.com/docs/cstadll/v11x/README.html�
http://www.obj-sys.com/docs/cstadll/v11x/CSTADLLv11xRef.pdf�
http://www.obj-sys.com/docs/cstadll/v11x/HTML�
http://www.obj-sys.com/change-log-cstadll-v11x.shtml�
http://www.obj-sys.com/docs/cstadll/v10x/README.html�
http://www.obj-sys.com/docs/cstadll/v10x/CSTADLLv10xRef.pdf�
http://www.obj-sys.com/docs/cstadll/v10x/HTML�
http://www.obj-sys.com/change-log-cstadll-v10x.shtml�
http://www.obj-sys.com/xbrelease22.html�
http://www.obj-sys.com/xbinder-manuals.shtml�
http://www.obj-sys.com/change-log-xbinder-2.2.shtml�
http://www.obj-sys.com/xbrelease21.html�
http://www.obj-sys.com/xbinder-manuals.shtml�
http://www.obj-sys.com/change-log-xbinder-2.1.shtml�
http://www.obj-sys.com/xbrelease20.html�
http://www.obj-sys.com/xbinder-manuals.shtml�
http://www.obj-sys.com/change-log-xbinder-2.0.shtml�
http://www.obj-sys.com/xbrelease15.html�
http://www.obj-sys.com/xbinder-manuals.shtml�
http://www.obj-sys.com/change-log-xbinder-1.5.shtml�
http://www.obj-sys.com/xbrelease14.html�
http://www.obj-sys.com/xbinder-manuals.shtml�
http://www.obj-sys.com/change-log-xbinder-1.4.shtml�
http://www.obj-sys.com/xbtutorial/XBinderTutorial_01.shtml�
http://www.obj-sys.com/w3cdatabinding/report_xbinder_c_1.4.html�
http://www.obj-sys.com/xbbenchmark.shtml�

NL Telecom co., Ltd Obijective System ASN1C ASN.1 Compiler Training

License Servers

RLM license server on Windows

RLM license server on UNIX

objsys license server on Windows

objsys license server on UNIX

General Articles and Tutorials

[PRESENTATION] W3C Efficient XML Interchange (EXI)

[WHITEPAPER] Use of ASN.1 Encoding Rules for Binary XML

[CONFORMANCE TESTS] W3C XML Schema Patterns for Databinding Test Results

General Articles and Tutorials

[PRESENTATION] W3C Efficient XML Interchange (EXI)

[WHITEPAPER] Use of ASN.1 Encoding Rules for Binary XML

THE END OF DOCUMENT

©Copyright 2001-2009. Objective Systems, Inc. All Rights Reserved.

NLT-PD-ASN1-004 Version 1.4 DRAFT Page : 100 of 100

http://www.obj-sys.com/docs/RLM/README_w32.html�
http://www.obj-sys.com/docs/RLM/README_unix.html�
http://www.obj-sys.com/docs/floating_lic/README_w32.html�
http://www.obj-sys.com/docs/floating_lic/README.txt�
http://www.obj-sys.com/binxml/EXILightning.pdf�
http://www.obj-sys.com/docs/ASN1forBinXML.pdf�
http://www.obj-sys.com/w3cdatabinding/report_xbinder_c_1.4.html�
http://www.obj-sys.com/binxml/EXILightning.pdf�
http://www.obj-sys.com/docs/ASN1forBinXML.pdf�

	Getting Started with the ASN1C C / C++ Command Line
	Visual Studio Projects
	Creating a Project
	Using the ASN1C Graphical User Interface (GUI) Wizard - Page 3
	Using the ASN1C Graphical User Interface (GUI) Wizard - Page 4
	Using the ASN1C Graphical User Interface (GUI) Wizard - Page 5
	Using the ASN1C Graphical User Interface (GUI) Wizard - Page 6
	Using the ASN1C Graphical User Interface (GUI) Wizard - Page 7
	Generated Makefile
	Generated VC++ Project Files
	Encode/Decode Function Prototypes
	General Procedures for Encoding and Decoding
	7TDynamic Memory Management7T
	7TPopulating Generated Structure Variables for Encoding7T
	7TAccessing Encoded Message Components7T
	ASN1VE
	General Articles and Tutorials

